Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
文献类型: 外文期刊
作者: Liu, Chang 1 ; Sun, Qian 3 ; Zhang, Chi 2 ; Chen, Wentao 2 ; Qu, Xuzhou 2 ; Tang, Boyi 2 ; Ma, Kai 2 ; Gu, Xiaohe 2 ;
作者机构: 1.Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Yangzhou Univ, Agr Coll, Res Inst Smart Agr, Jiangsu Coinnovat Ctr Modern Prod Technol Grain Cr, Yangzhou 225009, Peoples R China
关键词: Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change
期刊名称:PRECISION AGRICULTURE ( 影响因子:6.6; 五年影响因子:7.4 )
ISSN: 1385-2256
年卷期: 2025 年 26 卷 3 期
页码:
收录情况: SCI
摘要: Current approaches for monitoring soil organic matter (SOM) exhibit limitations in long-term predictive accuracy and data efficiency. This study aims to develop a remote sensing framework that integrating Landsat imagery and three modeling algorithms (PLSR, RF, Cubist) to address these challenges, reduce sampling workload, and enable large scale soil fertility assessments. Feature selection via Boruta and recursive feature elimination (RFE) was applied to optimize model performance, with PLSR identified astheoptimal algorithm. The framework utilized long-term Landsat imagery (2007-2021) and an inter-annual migration learning approach to map SOM dynamics. PLSR achieved cross-year SOM prediction (R2 = 0.51, RMSE = 3.97 g/kg), enabling accurate mapping of non-sample years with minimal field data and long-term imagery. Analysis of SOM trends revealed a decade-long decline in the study area, strongly correlated with land-use intensity. The proposed inter-annual migration learning method demonstrates that SOM dynamics can be efficiently tracked using sparse sampling and time-series remote sensing, offering a scalable tool for soil fertility management and precision agriculture.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
A Novel Approach for Maize Straw Type Recognition Based on UAV Imagery Integrating Height, Shape, and Spectral Information
作者:Liu, Xin;Gong, Huili;Guo, Lin;Zhou, Jingping;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gu, Xiaohe;Zhou, Jingping
关键词:maize straw type; multispectral imagery; SESI; object-oriented classification; UAV
-
Diffusive gradients in thin-films (DGT) for in situ measurement of neonicotinoid insecticides (NNIs) in waters
作者:Xiong, Junwu;Yi, Jiapei;Wang, Kang;Zhang, Chi;Chen, Wei;Qi, Shihua;Xiong, Junwu;Yi, Jiapei;Wang, Kang;Zhang, Chi;Chen, Wei;Qi, Shihua;Xiong, Junwu;Pu, Chang;Qian, Zhe;Chen, Wei;Qi, Shihua;Wang, Kang;Chen, Wei;Xu, Li;Liu, Wei;Chen, Wei;Chen, Wei;Chen, Wei;Zhang, Hao;Jones, Kevin C.;Zhang, Zulin
关键词:Neonicotinoid insecticides (NNIs); Passive sampling; Diffusive gradients in thin-films (DGT); Groundwater; Wastewater
-
Advancements in SELEX Technology for Aptamers and Emerging Applications in Therapeutics and Drug Delivery
作者:Feng, Liangjie;Sun, Yu;Yu, Yang;Liu, Chang;Yang, Jing;Chen, Jin;Wang, Fengchao;Jia, Wenshen;Luan, Yunxia
关键词:aptamer; SELEX; targeted drug delivery; therapeutics; nanotechnology; conjugates
-
Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed
作者:Tang, Boyi;Zhou, Jingping;Zhao, Chunjiang;Pan, Yuchun;Lu, Yao;Liu, Chang;Ma, Kai;Sun, Xuguang;Gu, Xiaohe;Tang, Boyi;Zhou, Jingping;Zhang, Ruifang
关键词:Object detection; Maize seedlings; Weed disturbance; YOLO; UAV multispectral images
-
Remote Sensing Dissolved Organic Matter in Freshwater Aquaculture Ponds by the Integration of UAV and Satellite Multispectral Images
作者:Chen, Guangxin;Chen, Tianen;Chen, Guangxin;Wang, Yancang;Gu, Xiaohe
关键词:Aquaculture; Autonomous aerial vehicles; Water quality; Remote sensing; Monitoring; Satellites; Satellite images; Accuracy; Estimation; Reflectivity; Dissolved organic matter; uncrewed aerial vehicle (UAV); multi-source remote sensing; freshwater aquaculture; machine learning
-
Decoding spatial consistency of multi-Source land cover products in China: Insights from heterogeneous landscapes
作者:Cui, Yanglin;Zhao, Chunjiang;Pan, Yuchun;Ma, Kai;Gu, Xiaohe;Cui, Yanglin;Liu, Xiaojun
关键词:Spatial Consistency; Landscape Index; Land Cover products; Hexagonal sampling; China



