Decoding spatial consistency of multi-Source land cover products in China: Insights from heterogeneous landscapes
文献类型: 外文期刊
作者: Cui, Yanglin 1 ; Zhao, Chunjiang 1 ; Pan, Yuchun 1 ; Ma, Kai 1 ; Liu, Xiaojun 2 ; Gu, Xiaohe 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Nanjing 210095, Jiangsu, Peoples R China
关键词: Spatial Consistency; Landscape Index; Land Cover products; Hexagonal sampling; China
期刊名称:INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION ( 影响因子:8.6; 五年影响因子:8.6 )
ISSN: 1569-8432
年卷期: 2025 年 139 卷
页码:
收录情况: SCI
摘要: High-resolution land cover (LC) data are essential for ecological monitoring and resource management, especially in heterogeneous landscapes containing diverse LC types. With the growing of available LC products, a comprehensive evaluation of their classification accuracy and spatial consistency is important for users' selection and application. In this study, we compared eight widely used LC products in China, including ESA World Cover (ESA20), ESRI GLC10 (ESRI17, ESRI20), FROM-GLC10 (FROM-GLC17), CLCD (CLCD20), GlobeLand30 (GLB20), GLC_FCS30 (GLC_FCS20), and GLC_FCSD30 (GLC_FCSD20), to examine their performances at both national and regional scales. We employed pixel-wise overlay analysis, visually interpreted validation samples, and classical landscape metrics to assess overall consistency and classification accuracy. The results show that the 30m_combination (CLCD20, GLB20, GLC_FCS20, and GLC_FCSD20) exhibits higher overall consistency at the national scale, with perfect consistency exceeding 60 %. In contrast, the 10m_combination (ESA20, ESRI17, ESRI20, and FROM_GLC17) captures finer regional details but displays greater inconsistencies in central and western regions. ESA20 achieves the highest overall accuracy (OA) at 88.5 % (CI: 88.44 %-88.56 %), while FROM_GLC17 records the lowest at 82.79 % (CI: 82.73 %-82.85 %). Cropland, forest, water, and snow/ice demonstrate higher consistency and classification accuracy (F1-scores > 80 %), whereas wetland, grassland, impervious surfaces, and bare land underperform in fragmented regions. Furthermore, spatial consistency is strongly associated with landscape metrics such as the aggregation index (AI) and contagion (CONTAG), which enhance consistency in large, contiguous patches (e.g., Northeast China Plain). Conversely, edge density (ED) and patch density (PD) show negative associations with consistency, highlighting persistent mapping challenges in fragmented regions (e.g., Yunnan-Guizhou Plateau and Qinghai-Tibet Plateau). These findings offer actionable insights for improving LC mapping in complex terrains and underscore the critical role of landscape metrics in advancing ecological monitoring and resource management.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
A Novel Approach for Maize Straw Type Recognition Based on UAV Imagery Integrating Height, Shape, and Spectral Information
作者:Liu, Xin;Gong, Huili;Guo, Lin;Zhou, Jingping;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gu, Xiaohe;Zhou, Jingping
关键词:maize straw type; multispectral imagery; SESI; object-oriented classification; UAV
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
作者:Liu, Chang;Liu, Chang;Zhang, Chi;Chen, Wentao;Qu, Xuzhou;Tang, Boyi;Ma, Kai;Gu, Xiaohe;Sun, Qian
关键词:Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change



