您好,欢迎访问河南省农业科学院 机构知识库!

Identification of miRNAs and their target genes associated with improved maize seed vigor induced by gibberellin

文献类型: 外文期刊

作者: Jin, Yunqian 1 ; Wang, Bin 1 ; Tian, Lei 4 ; Zhao, Linxi 1 ; Guo, Shulei 5 ; Zhang, Hengchao 1 ; Xu, Lengrui 1 ; Han, Zanping 1 ;

作者机构: 1.Henan Univ Sci & Technol, Coll Agron, Luoyang, Peoples R China

2.Zhengzhou Univ, Chinese Acad Agr Sci, Sch Agr Sci, State Key Lab Cotton Biol,Inst Cotton Res, Zhengzhou, Henan, Peoples R China

3.MOA, Key Lab Cotton Genet Improvement, Anyang, Henan, Peoples R China

4.Henan Agr Univ, Coll Agron, Zhengzhou, Peoples R China

5.Henan Acad Agr Sci, Cereal Inst, Henan Prov Key Lab Maize Biol, Zhengzhou, Peoples R China

关键词: maize; seed vigor; miRNAs; gibberellin; degradome sequencing; glycan degradation and galactose metabolism

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )

ISSN: 1664-462X

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: High seed vigor is crucial for agricultural production owing to its potential in high quality and yield of crops and a better understanding of the molecular mechanism associated with maize seed vigor is highly necessary. To better understand the involvement and regulatory mechanism of miRNAs correlated with maize seed vigor, small RNAs and degradome sequencing of two inbred lines Yu537A and Yu82 were performed. A total of 791 mature miRNAs were obtained with different expressions, among of which 505 miRNAs were newly identified and the rest miRNAs have been reported before by comparing the miRNAs with the sequences in miRbase database. Analysis of miRNA families showed maize seeds contain fewer miRNA families and larger miRNA families compared with animals, indicating that functions of miRNAs in maize seeds were more synergistic than animals. Degradome sequencing was used to identify the targets of miRNAs and the results showed a total of 6,196 targets were obtained. Function analysis of differentially expressed miRNAs and targets showed Glycan degradation and galactose metabolism were closely correlated with improved maize seed vigor. These findings provide valuable information to understand the involvement of miRNAs with maize seed vigor and these putative genes will be valuable resources for improving the seed vigor in future maize breeding.

  • 相关文献
作者其他论文 更多>>