您好,欢迎访问江苏省农业科学院 机构知识库!

Managing nitrogen for sustainable crop production with reduced hydrological nitrogen losses under a winter wheat-summer maize rotation system: an eight-season field study

文献类型: 外文期刊

作者: Wang, Li 1 ; Ma, Lei 1 ; Li, Yan 1 ; Geilfus, Christoph-Martin 4 ; Wei, Jianlin 1 ; Zheng, Fuli 1 ; Liu, Zhaohui 1 ; Tan, Deshui 1 ;

作者机构: 1.Shandong Acad Agr Sci, Inst Agr Resources & Environm, State Key Lab Nutrient Use & Management, Jinan, Peoples R China

2.Shandong Acad Agr Sci, Inst Modern Agr Yellow River Delta, Jinan, Peoples R China

3.Hebei Agr Univ, State Key Lab Crop Improvement & Regulat, Baoding, Peoples R China

4.Hsch Geisenheim Univ, Dept Soil Sci & Plant Nutr, Geisenheim, Germany

关键词: nitrogen management; nitrogen leaching; nitrogen runoff; nitrogen use efficiency; wheat-maize rotation system

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )

ISSN: 1664-462X

年卷期: 2023 年 14 卷

页码:

收录情况: SCI

摘要: Excessive nitrogen (N) application in wheat-maize cropping systems was adjusted towards more sustainable practices to reduce hydrological N losses while maintaining crop yield. In comprehensive quantification of N management effects on crop yield, N use efficiency (NUE), hydrological N losses, and soil nitrate residual across eight seasons, we have added to growing evidence of strategies beneficial for sustainable crop production with lower hydrological N losses. The results show that adjusted N practices enhanced crop yield and NUE, as compared to farmer's practices, but benefits varied with N rates and types. Optimized N treatment (OPT, 180 kg N ha-1 in both maize and wheat seasons) with or without straw returning produced the most crop yield. They increased maize yield by 5.5% and 7.3% and wheat yield by 6.2% and 3.2% on average, as compared to farmer's practice with huge N application (FP, 345 kg N ha-1 and 240 kg N ha-1 in maize and wheat). Regulation of N release through amendment with controlled release urea at a rate of 144 kg N ha-1 crop-1 (CRU treatment) obtained 4.4% greater maize yield than FP, and sustained a similar wheat yield with less N input, resulting in the highest crop NUE. Additionally, CRU was most effective in mitigating hydrological N loss, with 39.5% and 45.5% less leachate N and 31.9% and 35.9% less runoff N loss than FP in maize and wheat seasons. Synthetic N input correlated significantly and positively with runoff and leachate N losses, indicating it was one of the dominant factors driving hydrological N losses. Moreover, compared to OPT, additional straw returning (STR) or substituting 20% of the nutrients by duck manure (DMS) further reduced runoff N discharges due to the fact that organic matter incorporation increased resilience to rainfall. N over-application in FP caused considerable nitrate accumulation in the 0-90-cm soil profile, while the adjusted N practices, i.e., OPT, STR, CRU, and DMS treatments effectively controlled it to a range of 79.6-92.9 kg N ha-1. This study suggests that efforts using optimized N treatment integrated with CRU or straw returning should be encouraged for sustainable crop production in this region.

  • 相关文献
作者其他论文 更多>>