Green and effective remediation of heavy metals contaminated water using CaCO3 vaterite synthesized through biomineralization
文献类型: 外文期刊
作者: Jin, Bingbing 1 ; Wang, Sheng 1 ; Lei, Yuze 1 ; Jia, Hui 1 ; Niu, Qijian 2 ; Dapaah, Malcom Frimpong 1 ; Gao, Yan 3 ; Cheng, Liang 1 ;
作者机构: 1.Jiangsu Univ, Sch Environm & Safety Engn, Sch Emergency Management, Zhenjiang 212013, Peoples R China
2.Jiangsu Univ, Sch Agr Engn, Zhenjiang 212013, Peoples R China
3.Jiangsu Acad Agr Sci, Agr Resources & Environm, Nanjing 210014, Peoples R China
4.Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou 215009, Peoples R China
关键词: Biomineralization; Vaterite; Cadmium; Removal mechanism; Stability
期刊名称:JOURNAL OF ENVIRONMENTAL MANAGEMENT ( 影响因子:8.7; 五年影响因子:8.4 )
ISSN: 0301-4797
年卷期: 2024 年 353 卷
页码:
收录情况: SCI
摘要: Heavy metal pollution has attracted significant attention due to its persistent presence in aquatic environments. A novel vaterite-based calcium carbonate adsorbent, named biogenic CaCO3, was synthesized utilizing a microbially induced carbonate precipitation (MICP) method to remediate heavy metal-contaminated water. The maximum Cd2+ removal capacity of biogenic CaCO3 was 1074.04 mg Cd2+/g CaCO3 with a high Cd2+ removal efficiency greater than 90% (initial Cd2+ concentration 400 mg/L). Furthermore, the biogenic CaCO3 vaterite, induced by microbial-induced calcium carbonate precipitation (MICP) process, demonstrated a prolonged phase transformation to calcite and enhanced stability. This resulted in a sustained high effectiveness (greater than 96%) following six consecutive recycling tests. Additionally, X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that the semi -stable vaterite type of biogenic CaCO3 spontaneously underwent dissolution and recrystallization to form thermodynamic stable calcite in aquatic environments. However, the presence of Cd2+ leads to the transformation of vaterite into CdCO3 rather than undergoing direct converting to calcite. This transformation is attributed to the relatively low solubility of CdCO3 compared to calcite. Meanwhile, the biogenic CaCO3 proved to be an efficient and viable method for the removal of Pb2+, Cu2+, Zn2+, Co2+, Ni2+ and Mn2+ from water samples, surpassing the performance of previously reported adsorbents. Overall, the efficient and promising adsorbent demonstrates potential for practical in situ remediation of heavy metals-contaminated water.
- 相关文献
作者其他论文 更多>>
-
Phosphogypsum and biosynthesized selenium nanoparticles synergistically mitigate cadmium contamination and promote maize growth in wastewater-irrigated alkaline soil
作者:Alharbi, Khadiga;Gao, Yan;Hafez, Emad M.;Gao, Yan;Hafez, Emad M.;Elatafi, Essam;Omara, Alaa El-Dein;Gadow, Samir I.;Osman, Hany S.;Alshaal, Tarek;Alshaal, Tarek;Rashwan, Emadelden;Hafez, Emad M.
关键词:Alkaline soil; Antioxidant enzymes activity; Cadmium stress; Nutritional content; Soil chemical properties; Oxidative stress
-
Control locations confuse evaluation of passivation effects of iron-based biochar and selenium applications on wheat grain cadmium accumulation in a Cd-contaminated weakly alkaline soil
作者:Jing, Feng;Li, Hongbo;Zhou, Dongmei;Gao, Yan;Fan, Guangping;Zhang, Qingya;Gao, Xuezhen
关键词:field experiment; foliar Se application; Se accumulation; soil Cd heterogeneity; toxic metal; wheat Cd
-
Ball-Milling-Modified Biochar with Additives Enhances Soil Cd Passivation, Increases Plant Growth and Restrains Cd Uptake by Chinese Cabbage
作者:Lu, Xin;Sun, Jiawan;Pan, Guojun;Qi, Weicong;Zhang, Zhenhua;Gao, Yan;Lu, Xin;Gao, Yan;Zhang, Zhenhua;Zhang, Zhenhua;Xing, Jincheng
关键词:heavy metals; soil pollution; modification; adsorption; safe production
-
Mn-doped cerium dioxide nanozyme mediates ROS homeostasis and hormone metabolic network to promote wheat germination under low-temperature conditions
作者:Wu, Yixin;Xu, Shen;Sun, Mengqing;Liu, Lizhu;Shi, Gaoling;Gao, Yan;Wu, Yixin;Xu, Shen;Sun, Mengqing;Liu, Lizhu;Shi, Gaoling;Gao, Yan;Wei, Hui;Muhammad, Faheem;Muhammad, Faheem
关键词:Wheat; Nanozyme; Seed priming; Cold tolerance; Hormone metabolic
-
The role of symbiotic nitrogen-fixing bacteria, Rhizobium and Sinorhizobium, as "bridges" in the rhizosphere of legumes after fomesafen application
作者:Chen, Wei;Li, Yuntao;Shi, Gaoling;Fan, Guangping;Tong, Fei;Liu, Lizhu;Li, Jiangye;Gao, Yan;Chen, Wei;Li, Yuntao;Shi, Gaoling;Fan, Guangping;Tong, Fei;Liu, Lizhu;Li, Jiangye;Gao, Yan;Chen, Wei;Li, Yuntao;Fan, Guangping;Tong, Fei;Gao, Yan;Shi, Gaoling;Gao, Yan
关键词:Legumes; Nitrogen-fixing microbes; Rhizospheric network; Symbiotic nitrogen-fixing bacteria; Root characteristics
-
Insights into the impact of different phytoremediation strategies on antibiotic resistance genes at the metagenomic level in real scenarios
作者:Zhang, Wei-Guo;Liao, Yonghui;Zhang, Wei-Guo;Liang, Sizhou;Gao, Yan;Ran, Guangcan;Ji, Shenyang;Lei, Zhongfang
关键词:Antibiotic resistance genes; Phytoremediation; Metagenome; Wastewater
-
Enhancing rice productivity in wastewater-irrigated saline Cd-contaminated soils using microbial-nanoparticle synergy
作者:Hafez, Emad M.;Hafez, Emad M.;Gao, Yan;Hafez, Emad M.;Gao, Yan;La, Honggui;Alharbi, Khadiga;Hamada, Maha M.;Omara, Alaa El-Dein;Alshaal, Tarek;Alshaal, Tarek
关键词:Saline Cd-contaminated soil; Soil remediation; Rice productivity; Antioxidant enzymes; Sustainable agriculture; Food safety



