文献类型: 外文期刊
作者: Liu Yang 1 ; Sun Qian 1 ; Huang Jue 2 ; Feng Hai-kuan 1 ; Wang Jiao-jiao 1 ; Yang Gui-jun 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr, Beijing 100097, Peoples R China
2.Shandong Univ Sci & Technol, Coll Surveying Sci & Engn, Qingdao 266590, Peoples R China
3.Nanjing Agr Univ, Natl Informat Agr Engn Technol Ctr, Nanjing 210095, Peoples R China
4.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: Potato; Multispectral; Plant height; Vegetation indices; High frequency information; Above ground biomass
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )
ISSN: 1000-0593
年卷期: 2021 年 41 卷 8 期
页码:
收录情况: SCI
摘要: Above ground biomass (AGB) is an important indicator of evaluating crop growth and guiding agricultural production and management. Therefore, AGB information was obtained timely, accurately and efficiently to provide a strong basis for predicting yields and securing grain trade. The conventional way to obtain AGB is to use destructive sampling methods that require manual harvesting of crops, weighing, and recording, making large-area and long-term measurements difficult. However, UAV remote sensing technology is considered the most effective way to estimate AGB of large area crops with the rapid development of precision agriculture. In this study, the multispectral images of the tuber formation period, tuber growth period and starch accumulation period were obtained by the UAV platform equipped with multispectral sensors. The measured plant height, AGB and latitude, longitude and altitude of ground control point (GCP) were measured on the ground. Firstly, using UAV multispectral images combined GCP location information basing structure from motion (SFM) algorithm to generate the digital surface model (DSM) of the potato experimental field, and DSM extracted the plant height (Hdsm) of each growth period. Then, four original single band vegetation indices, 9 multiband vegetation indices,high-frequency information (HFI) in the red edge band and Hdsm were selected with AGB for correlation analysis. Finally, based on single-band vegetation indices (x(1)), multiband vegetation indices (x(2)), vegetation indicescombined Hdsm (x(3)),vegetation indices combined HFI (x(4)) and their integration (x(5)) as input parameters were used to estimate AGB of each growth period by partial least squares regression (PLSR) and ridge regression (RR). The results showed that: (1) The R-2 of extracted Hdsm and measured plant height was 0.87 and NRMSE was 14.34%. (2) All model parameters reached highly significant levels with the AGB, and correlations increased and then decreased from the tuber formation period to the starch accumulation period. (3) Using the same method to estimate potato AGB with five variables at different growth periods, it starts to get better and then it gets worse for the effect of potato AGB from tuber formation period to starch accumulation period with the estimation accuracy from high to low was x(5)>x(4)>x(3)>x(2)>x(1). (4) The results showed that PLSR was better than RR in estimating AGB for different growth stages and basing x(5) combined PLSR method was the best in estimating AGB at tuber growth period with R-2 of 0.73 and NRMSE of 15.22%. Therefore, this study combined the selected multispectral vegetation indices combined HFI and Hdsm with the PLSR method can significantly improve the estimation accuracy of AGB, which provides new technical support for the monitoring of AGB in large areas of potato crops.
- 相关文献
作者其他论文 更多>>
-
Estimation of Potato Plant Nitrogen Content Based on UAV Hyperspectral Imaging
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:UAV; Potato; Hyperspectral; Image features; Plant nitrogen content
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Estimation of Nitrogen Content in Potato Plants Based on Spectral Spatial Characteristics
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:Unmanned aerial vehicle; Potato; Plantnitrogen content; Vegetation indices; High frequency information
-
Leaf Area Index Estimation Based on UAV Hyperspectral Band Selection
作者:Kong Yu-ru;Wang Li-juan;Xu Yi;Liang Liang;Xu Lu;Zhang Qing-qi;Kong Yu-ru;Feng Hai-kuan;Yang Xiao-dong
关键词:Unmanned aerial vehicle (UAV); Hyperspectral image; Band selection; Winter wheat; Leaf area index
-
Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning
作者:Zhang Jie;Xu Bo;Feng Hai-kuan;Wang Jiao-jiao;Ming Shi-kang;Song Xiao-yu;Zhang Jie;Jing Xia;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice grain protein; Machine Learning; Ensemble algorithms; Adaboost; Random forest
-
Comparison of Machine Learning Algorithms for Remote Sensing Monitoring of Rice Yields
作者:Jing Xia;Zhang Jie;Zhang Jie;Wang Jiao-jiao;Ming Shi-kang;Feng Hai-kuan;Song Xiao-yu;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice yield estimation; Bayesian ridge regression; Support vector regression