文献类型: 外文期刊
作者: Jia, Zhixin 1 ; Li, Meng 2 ; Shi, Ce 1 ; Zhang, Jiaran 1 ; Yang, Xinting 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
2.China Agr Univ, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Natl Engn Lab Agriprod Qual Traceabil, Beijing 100097, Peoples R China
5.Minist Agr & Rural Affairs, Key Lab Cold Chain Logist Technol Agroprod, Beijing 100097, Peoples R China
关键词: Computer vision ?Salmon ?Eye color; parameters ?Chilled storage ?Freshness; indicators
期刊名称:FOOD PACKAGING AND SHELF LIFE ( 影响因子:8.749; 五年影响因子:8.737 )
ISSN: 2214-2894
年卷期: 2022 年 34 卷
页码:
收录情况: SCI
摘要: To evaluate and predict the freshness of salmon nondestructively, a computer vision technology was developed based on eye color to predict multiple freshness indicators of salmon simultaneously during storage at 0 degrees C. The RGB, L*a*b* , and HSI color spaces of eye images were analyzed by an image processing algorithm. It is demonstrated that the eye color parameters R, G, B, L* , I, and Delta E were correlated with freshness indicators to establish the multiple linear regression (MLR) and support vector regression (SVR) models. The MLR models outperformed SVR models with high correlation coefficients R2, F value, and low relative errors. The achieved results showed that it was a nondestructive, fast method for predicting the freshness of salmon stored at 0 degrees C by evaluating the eye color parameters with computer vision.
- 相关文献
作者其他论文 更多>>
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures
作者:Liu, Huan;Zhu, Lei;Ji, Zengtao;Zhang, Min;Yang, Xinting;Liu, Huan;Zhu, Lei;Ji, Zengtao;Yang, Xinting;Zhang, Min;Liu, Huan;Ji, Zengtao;Yang, Xinting;Liu, Huan;Ji, Zengtao;Yang, Xinting
关键词:Porphyrin; Fluorescence imaging; Beef; Freshness; Visualization
-
Deep learning models with optimized fluorescence spectroscopy to advance freshness of rainbow trout predicting under nonisothermal storage conditions
作者:Fan, Yanwei;Dong, Ruize;Ji, Zengtao;Shi, Ce;Dong, Ruize;Luo, Yongkang;Tan, Yuqing;Hong, Hui;Fan, Yanwei;Fan, Yanwei;Dong, Ruize;Ji, Zengtao;Shi, Ce;Fan, Yanwei;Dong, Ruize;Ji, Zengtao;Shi, Ce;Ji, Zengtao;Shi, Ce
关键词:Excitation -emission matrices; Parallel factor analysis; Freshness prediction; Radial basis function neural network; Long short-term memory; CNN_LSTM neural network
-
FCFormer: fish density estimation and counting in recirculating aquaculture system
作者:Zhu, Kaijie;Ma, Pingchuan;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen
关键词:recirculating aquaculture systems; density estimation; fish counting; transformer; deep learning
-
An ammonia-sensitive fluorescence sensor based on polyvinyl alcohol-graphene quantum dots/halloysite nanotubes hybrid film for monitoring fish freshness
作者:Zhang, Jiaran;Yu, Jie;Yin, Hao;Yue, Yuntao;Jia, Zhixin;Shi, Ce;Jia, Zhixin;Shi, Ce;Jia, Zhixin;Shi, Ce
关键词:Graphene quantum dots; Halloysite nanotubes; ammonia; Freshness; Fluorescence film
-
Synchronous fluorescence detection of nitrite in meat products based on dual-emitting dye@MOF and its portable hydrogel test kit
作者:Deng, Siyang;Liu, Junmei;Han, Dong;Zhang, Chunhui;Yang, Xinting;Liu, Huan;Yang, Xinting;Liu, Huan;Deng, Siyang;Liu, Junmei;Blecker, Christophe
关键词:Luminescent metal organic framework; Dual-mode detection; On-spot visualization; NO2-; Rh6G@UIO-66-NH2
-
A novel self-enhanced electrochemiluminescent aptamer sensor based on ternary nanocomposite PEI/RuSi-MWCNTs for the detection of profenofos residues in vegetables
作者:He, Zhenying;Liu, Wenzheng;Sun, Jiashuai;Huang, Jingcheng;Han, Jie;Li, Baoxin;Xu, Rui;Zhang, Yuhao;Hua, Jin;Guo, Yemin;Lu, Fangyuan;He, Zhenying;Shi, Ce;He, Zhenying;Liu, Wenzheng;Sun, Jiashuai;Huang, Jingcheng;Han, Jie;Li, Baoxin;Xu, Rui;Zhang, Yuhao;Hua, Jin;Guo, Yemin;Lu, Fangyuan;He, Zhenying;Liu, Wenzheng;Sun, Jiashuai;Huang, Jingcheng;Han, Jie;Li, Baoxin;Xu, Rui;Zhang, Yuhao;Hua, Jin;Guo, Yemin;Lu, Fangyuan;Wang, Haifang
关键词:Electrochemiluminescence; Ru(bpy)32+; Multi-walled carbon nanotubes; Profenofos; Aptasensor



