您好,欢迎访问广东省农业科学院 机构知识库!

Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: A role of SlGH3.4 in tomato

文献类型: 外文期刊

作者: Chen, Xiao 1 ; Chen, Jiadong 1 ; Liao, Dehua 1 ; Ye, Hanghang 1 ; Li, Cai 1 ; Luo, Zhenzhen 1 ; Yan, Anning 1 ; Zhao, Qin 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Resources & Environm Sci, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China

2.Guangdong Acad Agr Sci, Vegetable Res Inst, Guangdong Key Lab New Technol Res Vegetables, Guangzhou, Guangdong, Peoples R China

3.Zhejiang Acad Agr Sci, Zhejiang Inst Subtrop Crops, Wenzhou, Zhejiang, Peoples R China

4.Chinese Acad Agr Sci, Tobacco Res Inst, Key Lab Tobacco Genet Improvement & Biotechnol, Qingdao, Shandong, Peoples R China

5.Nanjing Inst Vegetable Sci, Dept Ecol Environm & Soil Sci, Nanjing, Jiangsu, Peoples R China

6.Suzhou Polytech Inst Agr, Coll Hort Technol, Suzhou, Jiangsu, Peoples R China

关键词: expansin; IAA-amido synthetase

期刊名称:PLANT CELL AND ENVIRONMENT ( 影响因子:7.228; 五年影响因子:7.791 )

ISSN: 0140-7791

年卷期:

页码:

收录情况: SCI

摘要: Most land plants can establish symbiosis with arbuscular mycorrhizal (AM) fungi to increase fitness to environmental challenges. The development of AM symbiosis is controlled by intricate procedures involving all phytohormones. However, the mechanisms underlying the auxin-mediated regulation of AM symbiosis remains largely unknown. Here, we report that AM colonisation promotes auxin response and indole-3-acetic acid (IAA) accumulation, but downregulates IAA biosynthesis genes in tomato (Solanum lycopersicum). External IAA application modulates the AM symbiosis by promoting arbuscule formation at low concentrations but repressing it at high concentrations. An AM-induced GH3 gene, SlGH3.4, encoding a putative IAA-amido synthetase, negatively regulates mycorrhization via maintaining cellular auxin homoeostasis. Loss of SlGH3.4 function increased free IAA content and arbuscule incidence, while constitutively overexpressing SlGH3.4 in either tomato or rice resulted in decreased IAA content, total colonisation level and arbuscule abundance in mycorrhizal roots. Several auxin-inducible expansin genes involved in AM formation or resistance to pathogen infection were upregulated in slgh3.4 mycorrhizal roots but downregulated in the SlGH3.4-overexpressing plants. Taken together, our results highlight a positive correlation between the endogenous IAA content and mycorrhization level, particularly arbuscule incidence, and suggest that the SlGH3.4-mediated auxin homoeostasis and regulation of expansin genes is involved in finely tuning the AM development.

  • 相关文献
作者其他论文 更多>>