Integrated analysis of transcriptome and metabolome reveals molecular mechanisms of salt tolerance in seedlings of upland rice landrace 17SM-19
文献类型: 外文期刊
作者: Zhou, Longhua 1 ; Zong, Yingjie 1 ; Li, Luli 1 ; Wu, Shujun 2 ; Duan, Mingming 3 ; Lu, Ruiju 1 ; Liu, Chenghong 1 ; Chen, Zhiwei 1 ;
作者机构: 1.Shanghai Acad Agr Sci, Biotechnol Res Inst, Shanghai Key Lab Agr Genet & Breeding, Shanghai, Peoples R China
2.Shanghai Acad Agr Sci, Crop Breeding & Cultivat Res Inst, Shanghai, Peoples R China
3.OE Biotech Co Ltd, Shanghai, Peoples R China
关键词: Oryza sativa L; NaCl treatment; shoot dry weight; K+ content; salt stress; seedling growth; liquid chromatography-mass spectrometry (LC; MS)
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: Salt stress is a major abiotic stress that threatens global rice production. It is particularly important to improve salt tolerance in upland rice because of its growth environment. Upland rice landrace 17SM-19 with high salt tolerance was obtained from a previous study. In this study, an integrated analysis of transcriptome and metabolome was performed to determine the responses of the rice seedling to salt stress. When treated with 100 mm NaCl, the rice seedling growth was significantly inhibited at 5 d, with inhibition first observed in shoot dry weight (SDW). Changes in potassium (K+) content were associated with changes in SDW. In omics analyses, 1,900 differentially expressed genes (DEGs) and 659 differentially abundant metabolites (DAMs) were identified at 3 d after salt stress (DAS), and 1,738 DEGs and 657 DAMs were identified at 5 DAS. Correlation analyses between DEGs and DAMs were also conducted. The results collectively indicate that salt tolerance of upland rice landrace 17SM-19 seedlings involves many molecular mechanisms, such as those involved with osmotic regulation, ion balance, and scavenging of reactive oxygen species.
- 相关文献
作者其他论文 更多>>
-
Integration of transcriptome and metabolome reveals the accumulation of related metabolites and gene regulation networks during quinoa seed development
作者:Wang, Qianchao;Liu, Junna;Zhang, Ping;Li, Li;Xie, Heng;Li, Hanxue;Wang, Hongxin;Qin, Peng;Shi, Jirong;Liu, Chenghong
关键词:Quinoa seeds,; Development period,; Transcriptome,; Metabolic group,; Regulatory network
-
Key phytochemicals contributing to the bitterness of quinoa
作者:Guo, Huimin;Liu, Chenghong;Xu, Hongwei;Wang, Siyu;Bao, Yuying;Ren, Guixing;Ren, Guixing;Bao, Yuying;Ren, Guixing;Yang, Xiushi
关键词:Triterpenoid; Kaempferol derivative; Bitterness; Sensory evaluation; Dose -over -threshold
-
Genetic Diversity and Genome-Wide Association Analysis of the Hulled/Naked Trait in a Barley Collection from Shanghai Agricultural Gene Bank
作者:Chen, Zhiwei;Guo, Zhenzhu;Li, Luli;Guo, Guimei;Zhang, Shuwei;Zong, Yingjie;Liu, Shiseng;Liu, Chenghong;Zhou, Longhua;Halford, Nigel G.
关键词:Hordeum vulgare L.; naked trait; genotyping-by-sequencing (GBS); genome-wide association studies (GWAS); Kompetitive Allele Specific PCR (KASP)
-
Efficient isolated microspore culture protocol for callus induction and plantlet regeneration in japonica rice (Oryza sativa L.)
作者:Gao, Runhong;Zong, Yingjie;Zhang, Shuwei;Guo, Guimei;Zhang, Wenqi;Chen, Zhiwei;Lu, Ruiju;Liu, Chenghong;Wang, Yifei;Li, Yingbo
关键词:Isolated microspore culture; Oryza sativa L.; Low-temperature pre-treatment; Microspore developmental stage; Callus induction; Plantlet regeneration
-
Advances in Identifying the Mechanisms by Which Microorganisms Improve Barley Salt Tolerance
作者:Chen, Zhiwei;Yan, Xin;Chen, Zhiwei;Guo, Zhenzhu;Zhou, Longhua;Xu, Hongwei;Liu, Chenghong
关键词:Hordeum vulgare L.; microbiome; salt tolerance; omics; bacteria community
-
Characterization of the aroma in barley leaves from different cultivars and tillering stages by HS-SPME/GC-MS, GC-O and E-nose
作者:Huang, Juan;Yang, Mengfei;Yu, Haiyan;Chen, Chen;Tian, Huaixiang;Zong, Yingjie;Liu, Chenghong
关键词:Barley leaf; Gas chromatography -mass spectrometry; Gas chromatography-olfactometry; Quantitative descriptive analysis; E -nose; Multivariate statistical analysis
-
Transcriptomics integrated with metabolomics reveals the effect of cold stress on rice microspores
作者:Li, Yingbo;Zong, Yingjie;Li, Wenrui;Guo, Guimei;Zhou, Longhua;Xu, Hongwei;Gao, Runhong;Liu, Chenghong;Li, Yingbo;Zong, Yingjie;Li, Wenrui;Guo, Guimei;Zhou, Longhua;Xu, Hongwei;Gao, Runhong;Liu, Chenghong
关键词:Microspore embryogenesis; Cold stress; Rice; Transcriptome; Metabolomics