Estimating Leaf Nitrogen Content in Corn Based on Information Fusion of Multiple-Sensor Imagery from UAV
文献类型: 外文期刊
作者: Xu, Xingang 1 ; Fan, Lingling 1 ; Li, Zhenhai 1 ; Meng, Yang 1 ; Feng, Haikuan 1 ; Yang, Hao 1 ; Xu, Bo 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Key Lab Quantitat Remote Sensing Agr, Beijing Res Ctr Informat Technol Agr, Minist Agr, Beijing 100097, Peoples R China
2.Jiangsu Univ, Sch Agr Engn, Zhenjiang 212013, Jiangsu, Peoples R China
关键词: RGB; multispectral; coverage adjusted spectral index; vegetation index; vegetation coverage; random frog algorithm
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2021 年 13 卷 3 期
页码:
收录情况: SCI
摘要: With the rapid development of unmanned aerial vehicle (UAV) and sensor technology, UAVs that can simultaneously carry different sensors have been increasingly used to monitor nitrogen status in crops due to their flexibility and adaptability. This study aimed to explore how to use the image information combined from two different sensors mounted on an UAV to evaluate leaf nitrogen content (LNC) in corn. Field experiments with corn were conducted using different nitrogen rates and cultivars at the National Precision Agriculture Research and Demonstration Base in China in 2017. Digital RGB and multispectral images were obtained synchronously by UAV in the V12, R1, and R3 growth stages of corn, respectively. A novel family of modified vegetation indices, named coverage adjusted spectral indices (CASIs (CASI =VI/1+FVcover, where VI denotes the reference vegetation index and FVcover refers to the fraction of vegetation coverage), has been introduced to estimate LNC in corn. Thereby, typical VIs were extracted from multispectral images, which have the advantage of relatively higher spectral resolution, and FVcover was calculated by RGB images that feature higher spatial resolution. Then, the PLS (partial least squares) method was employed to investigate the relationships between LNC and the optimal set of CASIs or VIs selected by the RFA (random frog algorithm) in different corn growth stages. The analysis results indicated that whether removing soil noise or not, CASIs guaranteed a better estimation of LNC than VIs for all of the three growth stages of corn, and the usage of CASIs in the R1 stage yielded the best R-2 value of 0.59, with a RMSE (root mean square error) of 22.02% and NRMSE (normalized root mean square error) of 8.37%. It was concluded that CASIs, based on the fusion of information acquired synchronously from both lower resolution multispectral and higher resolution RGB images, have a good potential for crop nitrogen monitoring by UAV. Furthermore, they could also serve as a useful way for assessing other physical and chemical parameters in further applications for crops.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown



