您好,欢迎访问湖北省农业科学院 机构知识库!

Transcriptomic responses to aluminum stress in tea plant leaves

文献类型: 外文期刊

作者: Huang, Danjuan 1 ; Gong, Ziming 1 ; Chen, Xun 1 ; Wang, Hongjuan 1 ; Tan, Rongrong 1 ; Mao, Yingxin 1 ;

作者机构: 1.Hubei Acad Agr Sci, Inst Fruit & Tea, Wuhan, Peoples R China

期刊名称:SCIENTIFIC REPORTS ( 影响因子:3.998; 五年影响因子:4.576 )

ISSN: 2045-2322

年卷期: 2021 年 11 卷 1 期

页码:

收录情况: SCI

摘要: Tea plant (Camellia sinensis) is a well-known Al-accumulating plant, showing a high level of aluminum (Al) tolerance. However, the molecular mechanisms of Al tolerance and accumulation are poorly understood. We carried out transcriptome analysis of tea plant leaves in response to three different Al levels (0, 1, 4 mM, for 7 days). In total, 794, 829 and 585 differentially expressed genes (DEGs) were obtained in 4 mM Al vs. 1 mM Al, 0 Al vs. 1 mM Al, and 4 mM Al vs. 0 Al comparisons, respectively. Analysis of genes related to polysaccharide and cell wall metabolism, detoxification of reactive oxygen species (ROS), cellular transport, and signal transduction were involved in the Al stress response. Furthermore, the transcription factors such as zinc finger, myeloblastosis (MYB), and WRKY played a critical role in transcriptional regulation of genes associated with Al resistance in tea plant. In addition, the genes involved in phenolics biosynthesis and decomposition were overwhelmingly upregulated in the leaves treated with either 0 Al and 4 mM Al stress, indicating they may play an important role in Al tolerance. These results will further help us to understand mechanisms of Al stress and tolerance in tea plants regulated at the transcriptional level.

  • 相关文献
作者其他论文 更多>>