Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe
文献类型: 外文期刊
作者: Jia, Meiqing 1 ; Gao, Zhiwei 2 ; Gu, Huijun 2 ; Zhao, Chenyu 4 ; Liu, Meiqi 2 ; Liu, Fanhui 2 ; Xie, Lina 2 ; Wang, Lichu 1 ;
作者机构: 1.Tianjin Normal Univ, Key Lab Water Resource & Environm, Tianjin, Peoples R China
2.Tianjin Normal Univ, Coll Life Sci, Tianjin, Peoples R China
3.Tianjin Normal Univ, Tianjin Key Lab Anim & Plant Resistance, Tianjin, Peoples R China
4.Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki, Japan
5.Jilin Acad Agr Sci, Inst Agr Environm & Resource, Changchun, Peoples R China
6.Tianjin Agr Ecol Environm Monitoring & Agr Prod Q, Tianjin, Peoples R China
7.Inner Mongolia Agr Univ, Coll Grassland Resources & Environm, Hohhot, Peoples R China
期刊名称:PLOS ONE ( 影响因子:2.74; 五年影响因子:3.226 )
ISSN: 1932-6203
年卷期: 2021 年 16 卷 3 期
页码:
收录情况: SCI
摘要: Currently, the impact of changes in precipitation and increased nitrogen(N) deposition on ecosystems has become a global problem. In this study, we conducted a 8-year field experiment to evaluate the effects of interaction between N deposition and precipitation change on soil bacterial communities in a desert steppe using high-throughput sequencing technology. The results revealed that soil bacterial communities were sensitive to precipitation addition but were highly tolerant to precipitation reduction. Reduced precipitation enhanced the competitive interactions of soil bacteria and made the ecological network more stable. Nitrogen addition weakened the effect of water addition in terms of soil bacterial diversity and community stability, and did not have an interactive influence. Moreover, decreased precipitation and increased N deposition did not have a superimposed effect on soil bacterial communities in the desert steppe. Soil pH, moisture content, and NH4+-N and total carbon were significantly related to the structure of bacterial communities in the desert steppe. Based on network analysis and relative abundance, we identified Actinobacteria, Proteobacteria, Acidobacteria and Cyanobacteria members as the most important keystone bacteria that responded to precipitation changes and N deposition in the soil of the desert steppe. In summary, we comprehensively analyzed the responses of the soil bacterial community to precipitation changes and N deposition in a desert steppe, which provides a model for studying the effects of ecological factors on bacterial communities worldwide.
- 相关文献
作者其他论文 更多>>
-
Soil organic carbon accumulation mechanisms in soil amended with straw and biochar: entombing effect or biochemical protection?
作者:Yuan, Yuhan;Liang, Yao;Cai, Hongguang;Yuan, Jingchao;Zhang, Chang;Wang, Lichun;Yuan, Yuhan;Li, Cuilan;Liu, Hang;Zhang, Jinjing
关键词:Amino sugar; Microbial necromass; Microbial community; Microbial biomass; Nuclear magnetic resonance; High throughput sequencing
-
Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses
作者:Meng, Xiangzeng;Wang, Lichun;Wang, Yongjun;Meng, Xiangzeng;Cao, Yujun;Lv, Yanjie;Wang, Lichun;Wang, Yongjun
关键词:
-
Enhancing Black Soil Fertility and Microbial Community Structure via Microbial Agents to Reduce Chemical Fertilizer Dependency: A Strategy to Boost Maize Yield
作者:Zhang, Fenglin;Wang, Nan;Zhao, Chenyu;Yang, Luze;Zhao, Xingmin;Wang, Hongbin;Huang, Ning;Gao, Hongjun;Zhang, Fugui
关键词:absolute quantitative 16S rRNA sequencing; bacterial community; microbial agent; maize yield; principal component analysis
-
Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress
作者:Meng, Xiangzeng;Chen, Denglong;Wang, Yongjun;Wang, Lichun;Meng, Xiangzeng;Chen, Denglong;Lv, Yanjie;Xu, Wenhua;Wang, Yongjun;Wang, Lichun
关键词:Seed germination; Abiotic stress; Antioxidant enzyme; Metabolomic; Glycolysis
-
Combining time-variable controlled release urea formulations to improve spring maize yield and reduce nitrogen losses in northeastern China
作者:Hou, Yunpeng;Kong, Lili;Zhang, Lei;Wang, Lichun;Xu, Xinpeng;Zhang, Yitao
关键词:Controlled -release urea; Nitrogen loss; Nitrogen use efficiency; Soil inorganic nitrogen; Northeast China
-
Increased topsoil depth required to support increased grain yield production in high density maize
作者:Zhang, Xiaolong;Kong, Yuanyuan;Shao, Xiwen;Geng, Yanqiu;Wang, Lichun;Wang, Yongjun;Zhang, Xiaolong;Kong, Yuanyuan;Lv, Yanjie;Yao, Fanyun;Cao, Yujun;Wang, Lichun;Wang, Yongjun
关键词:Grain yield; Harvest index; Root characteristics; Leaf area index; Net photosynthetic rate
-
An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation
作者:Zhang, Feng;Li, Shuxin;Li, Xiangnan;Zhang, Feng;Li, Shuxin;Li, Xiangnan;Wang, Lichun
关键词:zinc oxide nanoparticles; nanobubble irrigation; plant growth; soil physicochemical property; nutrient limitation; photosynthesis; OJIP curve



