Evaluating the feasibility of GF-1 remote sensing comparison with hyperspectral data for soil organic carbon prediction and mapping
文献类型: 外文期刊
作者: Guo, Yan 1 ; He, Jia 1 ; Li, Shimin 1 ; Zheng, Guoqing 1 ; Wang, Laigang 1 ;
作者机构: 1.Henan Acad Agr Sci, Inst Agr Econ & Informat, Zhengzhou 450002, Henan, Peoples R China
2.Henan Univ, Coll Environm & Planning, Kaifeng 475004, Henan, Peoples R China
期刊名称:2020 INTERNATIONAL CONFERENCE ON GREEN CHEMICAL AND ENVIRONMENTAL SCIENCE
ISSN: 1755-1307
年卷期: 2020 年 545 卷
页码:
收录情况: SCI
摘要: High-resolution remote sensing data play a very important role in agriculture. However, the major sources of high-resolution images are not owned by China. The Chinese "High Resolution Earth Observation Systems" was deployed in 2010, and several major projects have been implemented. The present study focused on assessing the feasibility of Gaofen (GF) multi-spectral data for monitoring bare soil organic carbon (SOC) at field and regional scales. The data sources are hyperspectra measured under laboratory conditions and simulated multi-spectral data from GF-1 remote sensing images. Partial least squares regression (PLSR) was used to estimate SOC. At the field scale, the SOC hyperspectral prediction model produced better R-2=0.9688, RMSE=0.3818, and RPD=5.6393 than the simulated multi-spectral SOC prediction model (R-2=0.8179, RMSE=0.9913, RPD=2.3401). At a regional scale, the SOC hyperspectral prediction model also produced a better R-2=0.9319, RMSE=1.097, and RPD=3.8758 than the simulated multi-spectral SOC predicted model (R-2=0.8445, RMSE=1.6574, RPD=2.4228). For the simulated GF-1 multi-spectra model, regional scale predications had advantages over field scale predictions. The spatial distribution characteristics of SOC measurements and predictions from hyperspectral data and simulated GF-1 multi-spectral data were similar. Thus, satisfactory performance of the predictive and calibrated models validates the feasibility of these methods for rapid large-scale SOC monitoring.
- 相关文献
作者其他论文 更多>>
-
Automatic grading evaluation of winter wheat lodging based on deep learning
作者:Zang, Hecang;Su, Xinqi;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Zang, Hecang;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Su, Xinqi;Shen, Hualei;Wang, Yanjing;Hu, Weiguo
关键词:UAV image; winter wheat; deep learning; lodging degree; lodging area
-
National-scale 10 m annual maize maps for China and the contiguous United States using a robust index from Sentinel-2 time series
作者:Huang, Yingze;Qiu, Bingwen;Peng, Yufeng;Lin, Duoduo;Cheng, Feifei;Liang, Juanzhu;Huang, Hongyu;Chen, Chongcheng;Yang, Peng;Wu, Wenbin;Chen, Xuehong;Zhu, Xiaolin;Xu, Shuai;Wang, Laigang;Dong, Zhanjie;Zhang, Jianyang;Berry, Joe;Tang, Zhenghong;Tan, Jieyang;Duan, Dingding;Qiu, Bingwen
关键词:Crop mapping; Maize index; National -scale; Cross -region; Spatiotemporal variations
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images
作者:Guo, Yan;He, Jia;Zhang, Huifang;Wei, Panpan;Jing, Yuhang;Yang, Xiuzhong;Zhang, Yan;Wang, Laigang;Zheng, Guoqing;Guo, Yan;He, Jia;Zhang, Huifang;Wei, Panpan;Jing, Yuhang;Yang, Xiuzhong;Zhang, Yan;Zheng, Guoqing;Guo, Yan;Yang, Xiuzhong;Zhang, Yan;Zheng, Guoqing;Shi, Zhou;Wang, Laigang
关键词:aboveground biomass; UAV; height; transferability; BP neural network; machine learning
-
National-scale 10-m maps of cropland use intensity in China during 2018-2023
作者:Qiu, Bingwen;Liu, Baoli;Xu, Weiming;Liang, Juanzhu;Chen, Nan;Li, Zhengrong;Wu, Fangzheng;Tang, Zhenghong;Dong, Jinwei;Chen, Jiangping;Wang, Laigang;Zhang, Chengming
关键词:
-
Where is tea grown in the world: A robust mapping framework for agroforestry crop with knowledge graph and sentinels images
作者:Peng, Yufeng;Qiu, Bingwen;Xu, Weiming;Li, Mengmeng;Liang, Juanzhu;Huang, Yingze;Cheng, Feifei;Chen, Jianfeng;Wu, Fangzheng;Jian, Zeyu;Li, Zhengrong;Tang, Zhenghong;Yang, Peng;Wu, Wenbin;Chen, Xuehong;Zhu, Xiaolin;Zhu, Peng;Zhu, Peng;Zhang, Xin;Wang, Xinshuang;Zhang, Chengming;Wang, Laigang;Qiu, Bingwen
关键词:Special cash crop; Agroforestry crop mapping; Tea plantation; Phenology-based algorithm; Sentinel-1/2
-
A Comprehensive Evaluation of Dual-Polarimetric Sentinel-1 SAR Data for Monitoring Key Phenological Stages of Winter Wheat
作者:Wang, Mo;Cui, Yunpeng;Liu, Juan;Chen, Li;Wang, Ting;Li, Huan;Wang, Mo;Cui, Yunpeng;Liu, Juan;Chen, Li;Wang, Ting;Li, Huan;Wang, Laigang;Guo, Yan;Wang, Laigang;Guo, Yan
关键词:dual-polarimetric SAR; wheat phenology; Sentinel-1; polarimetric parameters