Biocontrol efficiency and potential mechanism of streptomyces distatochromogenes XT34 against postharvest anthracnose caused by colletotrichum musae on banana fruit
文献类型: 外文期刊
作者: Zeng, Wending 1 ; Feng, Junting 2 ; Wei, Yongzan 2 ; Chen, Yufeng 2 ; Zhang, Miaoyi 2 ; Zhou, Dengbo 2 ; Qi, Dengfeng 2 ; Zhang, Lu 3 ; Xie, Jianghui 2 ; Wang, Wei 2 ;
作者机构: 1.Hainan Univ, Sch Trop Agr & Forestry, Danzhou 571737, Peoples R China
2.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Natl Key Lab Trop Crop Breeding, Haikou 571101, Peoples R China
3.Hainan Normal Univ, Coll Life Sci, Key Lab Trop Anim & Plant Ecol Hainan Prov, Minist Educ,Key Lab Ecol Trop Isl, Haikou 571158, Hainan, Peoples R China
关键词: Banana anthracnose; Biological control; Metabolites; Cell integrity; Defense response; Cell wall-degrading enzymes
期刊名称:POSTHARVEST BIOLOGY AND TECHNOLOGY ( 影响因子:6.4; 五年影响因子:6.9 )
ISSN: 0925-5214
年卷期: 2024 年 212 卷
页码:
收录情况: SCI
摘要: Banana anthracnose caused by Colletotrichum musae is a serious postharvest disease. Use of fungicides has potential adverse effects on the environment safety and human health. Application of biological control agents (BCA) is a promising strategy for managing postharvest fruit diseases. In this study, Streptomyces sp. XT34 was isolated from the banana rhizosphere soil and exhibited a strong antifungal activity against C. musae. Combining the phenotypic and whole-genomic alignment, strain XT34 was identified as Streptomyces diastatochromogenes. Strain XT34 extracts reduced the disease incidence of anthracnose and maintained the fruit quality of banana. Treatment of extracts reduced the colonization of C. musae on fruit surface. The activity inhibition of cell walldegrading enzymes maintained the cell-wall strength of fruit. The activity increase of defense enzymes contributed to the low disease symptom. It was supported by the differentially expressed genes (DEGs) related to supramolecular fiber organization and flavonoid biosynthesis. In addition, spore germination of C. musae was effectively inhibited by extracts. The morphology of mycelia and spore become wrinkled and ruptured. The treatment of extracts increased the optical density of A260 and soluble sugar and protein contents of C. musae. The integrity of cell membrane was also destroyed, reflecting on an increase in electrical conductivity and malondialdehyde. Several metabolites were found in the genome of strain XT34 using antiSMASH. Eleven volatile compounds were identified by gas chromatography-mass spectrometer (GC-MS). Notably, strain XT34 and extracts exhibited a broad-spectrum antifungal activity against eight phytopathogenic fungi. Hence, S. diastatochromogenes XT34 provides a potential BCA to control banana anthracnose.
- 相关文献
作者其他论文 更多>>
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting
作者:Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Lu;Pan, Yongbo
关键词:Bacillus siamensis; Tomato fusarium wilt; Biological control; Whole genome sequencing
-
Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils
作者:Zang, Xiaoping;Yun, Tianyan;Wang, Lixia;Ding, Zheli;Eissa, Mamdouh A.;Jing, Tao;Liu, Yongxia;Xie, Jianghui;He, Yingdui;Zhan, Rulin;Ma, Weihong;Eissa, Mamdouh A.
关键词:modern irrigation; fertigation; nutritional value; economic benefit; soil nutrients
-
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
作者:Wang, Dongjiao;Wang, Wei;Zang, Shoujian;Qin, Liqian;Liang, Yanlan;Lin, Peixia;Su, Yachun;Que, Youxiong;Que, Youxiong
关键词:Disease resistance; Expression profile; Transcriptome analysis; WRKY transcription factors
-
In Vitro Propagation Technology for the Endangered Aquatic Species Nymphoides coronata
作者:Lin, Fei;Kang, Yong;Li, Yamei;Guo, Yuhua;Yang, Guangsui;Yin, Junmei;Tang, Fenling;Lin, Fei;Eissa, Mamdouh A.;Wang, Wei;Yin, Junmei;Eissa, Mamdouh A.
关键词:tissue culture; Nymphoides; plant growth regulators; 6-BA; IAA; NAA
-
Physiological and Transcriptional Characteristics of Banana Seedlings in Response to Nitrogen Deficiency Stress
作者:Zhao, Lei;Zhang, Bencheng;Zhao, Lei;Cai, Bingyu;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan;Zhao, Lei;Cai, Bingyu;Zhang, Xiaohan;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan
关键词:banana; nitrogen deficiency; photosynthetic parameters; transcription level; phytohormone
-
Taxonomic identification and antagonistic activity of Streptomyces luomodiensis sp. nov. against phytopathogenic fungi
作者:Qi, Dengfeng;Liu, Qiao;Zou, Liangping;Zhang, Miaoyi;Li, Kai;Zhao, Yankun;Chen, Yufeng;Feng, Junting;Zhou, Dengbo;Wei, Yongzan;Wang, Wei;Xie, Jianghui;Zhang, Lu
关键词:Streptomyces; novel species; antifungal activity; taxonomic identification; banana Fusarium disease; antagonistic mechanism