Overexpression of AmCBF1 enhances drought and cold stress tolerance, and improves photosynthesis in transgenic cotton
文献类型: 外文期刊
作者: Lu, Guoqing 1 ; Wang, Lihua 1 ; Zhou, Lili 1 ; Su, Xiaofeng 1 ; Guo, Huiming 1 ; Cheng, Hongmei 1 ;
作者机构: 1.Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing, Peoples R China
2.Tianjin Acad Agr Sci, Inst Germplasm Resources & Biotechnol, Tianjin, Peoples R China
关键词: AmCBF1; Gene expression; Transgenic cotton; Stress tolerance; Photosynthesis
期刊名称:PEERJ ( 影响因子:3.061; 五年影响因子:3.537 )
ISSN: 2167-8359
年卷期: 2022 年 10 卷
页码:
收录情况: SCI
摘要: China???s main cotton production area is located in the northwest where abiotic stresses, particularly cold and drought, have serious effects on cotton production. In this study, Ammopiptanthus mongolicus C-repeat-binding factor (AmCBF1) isolated from the shrub Ammopiptanthus mongolicus was inserted into upland cotton (Gossypium hirsutum L.) cultivar R15 to evaluate the potential benefits of this gene. Two transgenic lines were selected, and the transgene insertion site was identified using whole-genome sequencing. The results showed that AmCBF1 was incorporated into the cotton genome as a single copy. Transgenic plants had distinctly higher relative water content (RWC), chlorophyll content, soluble sugar content, and lower ion leakage than R15 after drought and cold stress. Some characteristics, such as the area of lower epidermal cells, stomatal density, and root to shoot ratio, varied significantly between transgenic cotton lines and R15. Although the photosynthetic ability of transgenic plants was inhibited after stress, the net photosynthetic rate, stomatal conductance, and transpiration rate in transgenic plants were significantly higher than in R15. This suggested that an enhanced stress tolerance and photosynthesis of transgenic cotton was achieved by overexpressing AmCBF1. All together, our results demonstrate that the new transgenic cotton germplasm has great application value against abiotic stresses, especially in the northwest inland area of China.
- 相关文献
作者其他论文 更多>>
-
Overexpression of AmCBF1 enhances drought and cold stress tolerance, and improves photosynthesis in transgenic cotton
作者:Lu, Guoqing;Wang, Lihua;Zhou, Lili;Su, Xiaofeng;Guo, Huiming;Cheng, Hongmei;Lu, Guoqing
关键词:AmCBF1; Gene expression; Transgenic cotton; Stress tolerance; Photosynthesis
-
Genome-wide identification of microRNAs and phased siRNAs in soybean roots under long-term salt stress
作者:Wang, Qian;Yang, Yingxia;Lu, Guoqing;Chen, Rui;Sun, Xianjun;Zhang, Huiyuan;Jiang, Qiyan;Zhang, Hui;Hu, Zheng;Feng, Youren;Yan, Shuangyong
关键词:Long-term salt stress; Soybean roots; MicroRNA; Phased siRNA; Endogenous target mimicry