Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
文献类型: 外文期刊
作者: Sun, Xuguang 1 ; Zhang, Baoyuan 1 ; Dai, Menglei 2 ; Gao, Ruocheng 1 ; Jing, Cuijiao 3 ; Ma, Kai 2 ; Gu, Shubo 4 ; Gu, Limin 1 ; Zhen, Wenchao 1 ; Gu, Xiaohe 2 ;
作者机构: 1.Hebei Agr Univ, Coll Agron, Baoding, Hebei, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing, Peoples R China
3.State Key Lab North China Crop Improvement & Regul, Baoding, Hebei, Peoples R China
4.Shandong Agr Univ, State Key Lab Wheat Improvement, Tai An, Shandong, Peoples R China
5.Shandong Agr Univ, Coll Agron, Tai An, Shandong, Peoples R China
6.Minist Agr & Rural Affairs, Key Lab North China Water saving Agr, Baoding, Hebei, Peoples R China
关键词: reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.1; 五年影响因子:5.3 )
ISSN: 1664-462X
年卷期: 2024 年 15 卷
页码:
收录情况: SCI
摘要: Background Accurate estimation of reference crop evapotranspiration (ET0) is crucial for farmland hydrology, crop water requirements, and precision irrigation decisions. The Penman-Monteith (PM) model has high accuracy in estimating ET0, but it requires many uncommon meteorological data inputs. Therefore, an ideal method is needed that minimizes the number of input data variables without compromising estimation accuracy. This study aims to analyze the performance of various methods for estimating ET0 in the absence of some meteorological indicators. The Penman-Monteith (PM) model, known for its high accuracy in ET0 estimation, served as the standard value under conditions of adequate meteorological indicators. Comparative analyses were conducted for the Priestley-Taylor (PT), Hargreaves (H-A), McCloud (M-C), and FAO-24 Radiation (F-R) models. The Bayesian estimation method was used to improve the ET estimation model.Results Results indicate that, compared to the PM model, the F-R model performed best with inadequate meteorological indicators. It demonstrates higher average correlation coefficients (R2) at daily, monthly, and 10-day scales: 0.841, 0.937, and 0.914, respectively. The corresponding root mean square errors (RMSE) are 1.745, 1.329, and 1.423, and mean absolute errors (MAE) are 1.340, 1.159, and 1.196, with Willmott's Index (WI) values of 0.843, 0.862, and 0.859. Following Bayesian correction, R2 values remained unchanged, but significant reductions in RMSE were observed, with average reductions of 15.81%, 29.51%, and 24.66% at daily, monthly, and 10-day scales, respectively. Likewise, MAE decreased significantly, with average reductions of 19.04%, 34.47%, and 28.52%, respectively, and WI showed improvement, with average increases of 5.49%, 8.48%, and 10.78%, respectively.Conclusion Therefore, the F-R model, enhanced by the Bayesian estimation method, significantly enhances the estimation accuracy of ET0 in the absence of some meteorological indicators.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
A Novel Approach for Maize Straw Type Recognition Based on UAV Imagery Integrating Height, Shape, and Spectral Information
作者:Liu, Xin;Gong, Huili;Guo, Lin;Zhou, Jingping;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gu, Xiaohe;Zhou, Jingping
关键词:maize straw type; multispectral imagery; SESI; object-oriented classification; UAV
-
Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
作者:Liu, Chang;Liu, Chang;Zhang, Chi;Chen, Wentao;Qu, Xuzhou;Tang, Boyi;Ma, Kai;Gu, Xiaohe;Sun, Qian
关键词:Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change
-
Adjusted CBA-Wheat model for predicting aboveground biomass in winter wheat from hyperspectral data
作者:Chen, Jingshu;Yu, Jiaye;Zhang, Xiaokang;Li, Zhenhai;Chen, Jingshu;Gu, Limin;Zhen, Wenchao;Li, Zhenhai;Meng, Yang;Rossi, Francesco
关键词:Biomass; Remote sensing; Phenological stage; Winter wheat
-
Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed
作者:Tang, Boyi;Zhou, Jingping;Zhao, Chunjiang;Pan, Yuchun;Lu, Yao;Liu, Chang;Ma, Kai;Sun, Xuguang;Gu, Xiaohe;Tang, Boyi;Zhou, Jingping;Zhang, Ruifang
关键词:Object detection; Maize seedlings; Weed disturbance; YOLO; UAV multispectral images
-
Remote Sensing Dissolved Organic Matter in Freshwater Aquaculture Ponds by the Integration of UAV and Satellite Multispectral Images
作者:Chen, Guangxin;Chen, Tianen;Chen, Guangxin;Wang, Yancang;Gu, Xiaohe
关键词:Aquaculture; Autonomous aerial vehicles; Water quality; Remote sensing; Monitoring; Satellites; Satellite images; Accuracy; Estimation; Reflectivity; Dissolved organic matter; uncrewed aerial vehicle (UAV); multi-source remote sensing; freshwater aquaculture; machine learning
-
Decoding spatial consistency of multi-Source land cover products in China: Insights from heterogeneous landscapes
作者:Cui, Yanglin;Zhao, Chunjiang;Pan, Yuchun;Ma, Kai;Gu, Xiaohe;Cui, Yanglin;Liu, Xiaojun
关键词:Spatial Consistency; Landscape Index; Land Cover products; Hexagonal sampling; China



