A spectral index for estimating grain filling rate of winter wheat using UAV-based hyperspectral images
文献类型: 外文期刊
作者: Zhang, Baoyuan 1 ; Wu, Wenbiao 1 ; Zhou, Jingping 1 ; Dai, Menglei 1 ; Sun, Qian 1 ; Sun, Xuguang 1 ; Chen, Zhen 4 ; Gu, Xiaohe 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Nanjing Agr Univ, Coll Agr, Nanjing 211512, Peoples R China
3.Hebei Agr Univ, Coll Agron, Baoding 071033, Peoples R China
4.Chinese Acad Agr Sci, Inst Farmland Irrigat, Xinxiang 453002, Peoples R China
关键词: Grain filling rate; Thousand grain weight; UAV-based hyperspectral imaging; Winter wheat; Spectral index
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:7.7; 五年影响因子:8.4 )
ISSN: 0168-1699
年卷期: 2024 年 223 卷
页码:
收录情况: SCI
摘要: The grain filling rate (GFR) significantly affects grain weight and quality, playing a pivotal role in the winter wheat production. Traditional observation methods for grain filling rates rely on manual field sampling, which is both costly and time-consuming. This study aims to develop a spectral index using UAV-based hyperspectral image to estimate the grain filling rate of winter wheat analyze its dynamic changes. Initially, the savitzky-golay (SG) filtering algorithm was applied to smooth the original UAV hyperspectral data. Subsequently, according the contribution calculated by successive projections algorithm (SPA) and random forest algorithm (RF), three most sensitive bands of GFR were selected. Finally, the three selected sensitive bands were used to construct the grain filling rate spectral index (GFRSI) based on the angles formed on the spectral curve. The performance of GFRSI was compared with common spectral indices in the estimation of GFR and thousand-grain weight (TGW). The results indicate that GFRSI outperforms commonly used vegetation indices, achieving R2, RMSE, and NRMSE values of 0.79, 0.34 mg/d, and 12.5 %, respectively, for GFR estimation. Additionally, when considering the estimated GFR and grain filling duration (GFD), TGW estimation results exhibit R2, RMSE, and NRMSE values of 0.90, 4.66 g, and 9.0 %, respectively. Using the proposed model, we successfully achieved field-scale spatial mapping of GFR and TGW for winter wheat. The spectral index for grain filling rate constructed in this study provides valuable support and reference for the rapid estimation of winter wheat grain filling rates using UAV hyperspectral imaging technology.
- 相关文献
作者其他论文 更多>>
-
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
作者:Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Yang, Xiaodong;Meng, Yang;Jiang, Xiangtai;Xue, Hanyu
关键词:different varieties of grapes; leaf chlorophyll content; hyperspectral remote sensing; data-processing; RFR
-
Estimation of grain filling rate of winter wheat using leaf chlorophyll and LAI extracted from UAV images
作者:Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhang, Baoyuan;Dai, Menglei;Bao, Xiaoyuan;Sun, Qian;Zhang, Mingzheng;Qu, Xuzhou;Gu, Xiaohe;Zhen, Wenchao;Zhen, Wenchao;Li, Zhenhai;Zhen, Wenchao
关键词:Grain filling rate; UAV; Winter wheat; Vegetation index
-
A new approach to extract the upright maize straw from Sentinel-2 satellite imagery using new straw indices
作者:Zhou, Jingping;Gu, Xiaohe;Wu, Wenbiao;Pan, Yuchun;Sun, Qian;Zhang, Sen;Qu, Xuzhou;Zhou, Jingping;Liu, Cuiling;Sun, Qian;Zhang, Sen;Qu, Xuzhou
关键词:Upright maize straw; New straw index; Sentinel-2; Remote sensing; Decision tree
-
Estimation of grain filling rate and thousand-grain weight of winter wheat ( Triticum aestivum L. ) using UAV-based multispectral images
作者:Zhang, Baoyuan;Dai, Menglei;Sun, Qian;Qu, Xuzhou;Zhang, Mingzheng;Gu, Xiaohe;Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhen, Wenchao;Zhen, Wenchao;Zhang, Baoyuan;Liu, Xingyu;Fan, Chengzhi
关键词:Grain filling rate; Grain weight; UAV; Winter wheat; Vegetation index
-
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
作者:Sun, Xuguang;Zhang, Baoyuan;Gao, Ruocheng;Gu, Limin;Zhen, Wenchao;Sun, Xuguang;Zhang, Baoyuan;Dai, Menglei;Ma, Kai;Gu, Xiaohe;Dai, Menglei;Jing, Cuijiao;Gu, Limin;Zhen, Wenchao;Gu, Shubo;Gu, Shubo;Zhen, Wenchao
关键词:reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
-
Intelligent Grading of Tobacco Leaves Using an Improved Bilinear Convolutional Neural Network
作者:Lu, Mengyao;Wang, Cong;Wu, Wenbiao;Chen, Tian'en;Jiang, Shuwen;Chen, Dong;Wu, Wenbiao;Zhu, Dinglian;Chen, Tian'en;Jiang, Shuwen;Chen, Dong;Zhou, Qiang;Wang, Zhiyong
关键词:Bilinear convolutional neural network; deep learning; multi-level features; tobacco image classification; tobacco grading
-
Hyperspectral estimation of maize (Zea mays L.) yield loss under lodging stress
作者:Sun, Qian;Chen, Liping;Sun, Qian;Gu, Xiaohe;Qu, Xuzhou;Zhang, Sen;Zhou, Jingping;Pan, Yuchun;Chen, Liping;Qu, Xuzhou;Zhang, Sen
关键词:Maize; Lodging stress; Canopy hyperspectral; Yield loss; Feature selection