Simultaneous analysis of indaziflam and its metabolites in pitaya using dispersive solid phase extraction coupled with liquid chromatography coupled with tandem mass spectrometry
文献类型: 外文期刊
作者: Liu, Xiaoliang 1 ; Ji, Chunhong 1 ; Tang, Wenwei 1 ; Hu, Mingfeng 1 ; Tan, Huihua 1 ; Li, Xuesheng 1 ; Ma, Shaozhi 3 ; Yu 1 ;
作者机构: 1.Guangxi Univ, Coll Agr, Guangxi Key Lab Agr Environm & Agr Prod Safety, Nanning, Peoples R China
2.Jiangsu Acad Agr Sci, Inst Food Safety & Nutr, Minist Sci & Technol, Jiangsu Key Lab Food Qual & Safety,State Key Lab, Nanjing, Peoples R China
3.Seed Adm Stn Bijie, Bijie, Peoples R China
关键词: indaziflam; liquid chromatography-tandem mass spectrometry; metabolites; pitaya; residue
期刊名称:JOURNAL OF SEPARATION SCIENCE ( 影响因子:3.645; 五年影响因子:2.943 )
ISSN: 1615-9306
年卷期:
页码:
收录情况: SCI
摘要: A simple and efficient multiresidue method using dispersive solid phase extraction and liquid chromatography coupled with tandem mass spectrometry was developed for the targeted analysis of indaziflam and its five metabolites (indaziflam-diaminotriazine, indaziflam-carboxylic acid, indaziflam-triazine indanone, indaziflam-hydroxyethyl, and indaziflam-olefin) in pitaya samples (including roots, plants, flowers, peels, pulp, and whole fruit). The analytes were extracted with acetonitrile, and the extracts were purified using multiwalled carbon nanotubes. The method was validated using pitaya samples spiked at 0.5, 5, and 50 mu g/kg, and the average recoveries varied from 61.1 to 103.7% with relative standard deviations lower than 12.7% (n = 5). This method exhibited sufficient linearity within the concentration range of 0.1-100 mu g/L. The limits of detection and quantification were in the ranges of 0.001-0.1 and 0.003-0.3 mu g/kg, respectively. The method was successfully applied to analyze pitaya samples in Nanning, and no indaziflam or its metabolites were detected in the samples analyzed.
- 相关文献
作者其他论文 更多>>
-
Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums
作者:Zhang, Kaiwei;Yu, Xiangyang;Zhang, Kaiwei;Chen, Meng;Zhang, Xue;Chen, Jian;Chen, Xiaolong;Li, Yong;Yu, Xiangyang;Zhang, Kaiwei;Chen, Meng;Zhang, Xue;Chen, Jian;Chen, Xiaolong;Li, Yong;Yu, Xiangyang;Liu, Xin
关键词:Gum; Metabolomics; Flavonoids; Total phenols content; Metabolites
-
Thymol Stimulates Lateral Root Formation via Regulating Endogenous Reactive Oxygen Species
作者:Li, Jiajun;Hu, Liangbin;Chen, Jian;Hao, Yini;Li, Yong;Wang, Ya;Yu, Xiangyang;Wang, Liyuan;Lu, Chuan
关键词:thymol; lateral root; reactive oxygen species; Rboh; NADPH oxidase; biostimulant
-
Understanding the ternary interaction of crop plants, fungal pathogens, and rhizobacteria in response to global warming
作者:Feng, Fayun;Du, Fei;Li, Qiuling;Liu, Changhong;Feng, Fayun;Zhang, Leigang;Yu, Xiangyang
关键词:Global warming; Crop Plants; Plant-microbe interactions; Root exudates; Fungal-bacterial antagonism
-
Colonization Mechanism of Endophytes with Plants and Their Role in Pesticides Degradation
作者:Ahmad, Faizan;Ahmad, Faizan;Wang, Pei;Sun, Pengyuan;Liu, Yang;Ge, Jing;Chen, Jian;Yu, Xiangyang;Wang, Pei;Sun, Pengyuan;Liu, Yang
关键词:endophytic bacteria; cell wall modification; phytohormones; secretion systems; reactive oxygenspecies; pesticides
-
Growth-promoting bacterium Enterobacter sp. CS8-gfp triggers jasmonate signaling pathway for atrazine and thiamethoxam degradation in rice (Oryza sativa L.)
作者:Ma, Li Ya;Wan, Qun;Ge, Jing;Li, Yong;Feng, Fayun;Li, Mei;Cheng, Jinjin;Chen, Jian;Wang, Ya;Cao, Yaoyao;Yu, Xiangyang;Ma, Li Ya;Wan, Qun;Ge, Jing;Li, Yong;Feng, Fayun;Li, Mei;Cheng, Jinjin;Chen, Jian;Wang, Ya;Cao, Yaoyao;Yu, Xiangyang;Yang, Chenye
关键词:Growth-promoting bacterium; Atrazine; Thiamethoxam; Jasmonic acid; Degradation
-
Two aquaporins, PIP1;1 and PIP2;1, mediate the uptake of neonicotinoid pesticides in plants
作者:Wan, Qun;Cheng, Jinjin;Wang, Ya;Ge, Jing;Ma, Liya;Li, Yong;Sun, Xing;Chen, Xiaolong;Yu, Xiangyang;Wan, Qun;Li, Yixin;Cheng, Jinjin;Wang, Ya;Ge, Jing;Ma, Liya;Li, Yong;Liu, Jianan;Zhou, Chunli;Li, Haocong;Sun, Xing;Chen, Xiaolong;Yu, Xiangyang;Liu, Tingli;Li, Qing X.
关键词:neonicotinoid; aquaporin; Brassica rapa; plasma membrane; uptake; systemic pesticide
-
Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants
作者:Li, Yong;Chen, Jian;Zhang, Leigang;Cheng, Jinjin;Yu, Xiangyang;Li, Yong;Zhang, Kaiwei;Chen, Jian;Zhang, Leigang;Feng, Fayun;Cheng, Jinjin;Ma, Liya;Li, Mei;Wang, Ya;Yu, Xiangyang;Yu, Xiangyang;Jiang, Wayne
关键词:microbial compensatory; pesticides; rhizospherebacteria; root exudates; plant growth



