Predictive geographical authentication of green tea with protected designation of origin using a random forest model
文献类型: 外文期刊
作者: Deng, Xunfei 1 ; Liu, Zhi 1 ; Zhan, Yu 3 ; Ni, Kang 4 ; Zhang, Yongzhi 1 ; Ma, Wanzhu 1 ; Shao, Shengzhi 1 ; Lv, Xiaonan; 1 ;
作者机构: 1.Zhejiang Acad Agr Sci, Hangzhou 310021, Zhejiang, Peoples R China
2.Minist Agr & Rural Affairs China, Key Lab Informat Traceabil Agr Prod, Hangzhou 310021, Zhejiang, Peoples R China
3.Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
4.Chinese Acad Agr Sci, Tea Res Inst, Hangzhou 310008, Zhejiang, Peoples R China
5.GNS Sci, Natl Isotope Ctr, Lower Hutt 5040, New Zealand
关键词: Geographical origin; Green tea; Random forest; Geochemical proxies; Predictive model; Classification
期刊名称:FOOD CONTROL ( 影响因子:5.548; 五年影响因子:5.498 )
ISSN: 0956-7135
年卷期: 2020 年 107 卷
页码:
收录情况: SCI
摘要: Reliable origin authentication methods are critical for protecting high-value food products with designated geographical origins. A total of 623 tea samples were collected from important green tea production regions around China from 2012 to 2016. A Random Forest model (RF) with 19 input predictors (e.g., delta C-13, Mg-24, Rb-85, and Pb-206/Pb-207) was developed. Our RF model not only discriminated Westlake Xihu Longjing green tea (XHLJ) from other regions with an accuracy of 97.6%, but also correctly identified green tea from surrounding regions with an accuracy of 97.9%. The geographical discrimination of tea subsequently harvested in the following years also showed good reliability. Predictive accuracies were higher than 91%. Rb-85, Mg-24, delta C-13 and K-39 were the most important geographical proxies for determining geographical origin of tea with a relative contribution of 20.6%, 12.5%, 12.1% and 7.4%, respectively. This RF model showed higher classification accuracy than other commonly used chemometrics models and provides a new insight into the use of predictive models utilizing historical data for geographical authentication of agricultural products with Protected Designation of Origin (PDO).
- 相关文献
作者其他论文 更多>>
-
Authentication of edible herbal materials and food products using mass spectrometry based metabolites and inorganic constituents
作者:Wadood, Syed Abdul;Nie, Jing;Li, Chunlin;Yuan, Yuwei;Wadood, Syed Abdul;Nie, Jing;Li, Chunlin;Yuan, Yuwei;Wadood, Syed Abdul;Nie, Jing;Li, Chunlin;Rogers, Karyne M.;Yuan, Yuwei;Xiao, Jianbo;Song, Yan;Liu, Hongyan;Wadood, Syed Abdul;Khan, Wahab Ali;Khan, Abbas;Rogers, Karyne M.
关键词:Medicinal food homologous products; Geographical authentication; Adulteration; Metabolites; Stable isotopes; Food fraud
-
Synergies between Carbon Sequestration, Nitrogen Utilization, a Mushroom Quality: A Comprehensive Review of Substrate, Fungi, and Soil Interactions
作者:Nuralykyzy, Bayan;Nie, Jing;Mei, Hanyi;Zhang, Yongzhi;Rogers, Karyne M.;Li, Chunlin;Yuan, Yuwei;Nuralykyzy, Bayan;Nie, Jing;Mei, Hanyi;Zhang, Yongzhi;Rogers, Karyne M.;Li, Chunlin;Yuan, Yuwei;Rogers, Karyne M.
关键词:carbon sequestration; nitrogen utilization; mushroom quality; substrates; fungal species; soil health
-
Estimating the spatial distribution and exploring the factors influencing cultivated land quality through a hybrid random forest and Bayesian maximum entropy model
作者:Fei, Xufeng;Lou, Zhaohan;Sheng, Meiling;Xiang, Mingtao;Ren, Zhouqiao;Lv, Xiaonan;Fei, Xufeng;Sheng, Meiling;Xiang, Mingtao;Ren, Zhouqiao;Lv, Xiaonan;Xiao, Rui
关键词:Soil quality; Spatial analysis; Bayesian maximum entropy; Influencing factors; Machine learning
-
Exploring the spatio-temporal dynamics and driving mechanisms of toxic metal pollution in soil using a hybrid machine learning-based model
作者:Xiang, Mingtao;Lou, Zhaohan;Sheng, Meiling;Ren, Zhouqiao;Fei, Xufeng;Lv, Xiaonan;Xiang, Mingtao;Sheng, Meiling;Ren, Zhouqiao;Fei, Xufeng;Lv, Xiaonan;Xiao, Rui
关键词:Toxic metals; Risk assessment; Spatio-temporal variation; Source-oriented health risk; Driving factors
-
Characterizing Chinese saffron Origin, Age and grade using VNlR hyperspectral imaging and Machine learning
作者:Wu, Jiahui;Xu, Xinyue;Feng, Peishi;Wang, Ping;Wu, Jiahui;Nie, Jing;Xu, Xinyue;Li, Chunlin;Mei, Hanyi;Rogers, Karyne M.;Yuan, Yuwei;Wu, Jiahui;Nie, Jing;Xu, Xinyue;Li, Chunlin;Mei, Hanyi;Rogers, Karyne M.;Yuan, Yuwei;Hu, Hao;Zhou, Hongkui;Rogers, Karyne M.;Wang, Ping
关键词:Saffron; Geographical origin; Hyperspectral imaging; Machine learning
-
Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition
作者:Ju, Yanjun;Liu, Hejiang;Niu, Shuhui;Kang, Lu;Ma, Lei;Zhao, Duoyong;Li, An;Zhao, Yan;Yuan, Yuwei
关键词:Lycium barbarum; Geographical origin; Stable isotopes; Cultivar; Harvest year; OPLS-DA
-
Application of Stable Isotopes and Multi Elemental Fingerprints to Verify the Origin of Premium Chinese Hainan Bananas
作者:Huang, Yurong;Huang, Yurong;Mei, Hanyi;Zhang, Yongzhi;Nie, Jing;Rogers, Karyne M.;Nuralykyzy, Bayan;Li, Chunlin;Yuan, Yuwei;Huang, Yurong;Mei, Hanyi;Zhang, Yongzhi;Nie, Jing;Rogers, Karyne M.;Nuralykyzy, Bayan;Li, Chunlin;Yuan, Yuwei;Wang, Mingyue;Huan, Zhibo;Rogers, Karyne M.
关键词:Musa nana Lour.; delta C-13; delta N-15; delta O-18; delta H-2; elements; chemometrics; PLS-DA; model; traceability



