Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform
文献类型: 外文期刊
作者: Gu, Xiaohe 1 ; Wang, Yancang 3 ; Sun, Qian 4 ; Yang, Guijun 1 ; Zhang, Chao 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Areas, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Beijing Vegetable Res Ctr, Key Lab Vegetable Postharvest Proc, Minist Agr & Rural Areas, Beijing 100097, Peoples R China
3.North China Inst Aerosp Engn, Inst Comp & Remote Sensing Informat Technol, Langfang 065000, Peoples R China
4.Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Shandong, Peoples R China
关键词: Soil organic matter; Wavelet transform; Hyperspectral; Random forest algorithm
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:5.565; 五年影响因子:5.494 )
ISSN: 0168-1699
年卷期: 2019 年 167 卷
页码:
收录情况: SCI
摘要: Soil organic matter (SOM) is one of the most important indicators of cultivated land fertility and greatly influences other soil nutrient factors and physicochemical characteristics. This study aimed to develop a universal method to detect SOM content within the plough layer of cultivated land using ground hyperspectral data. The hyperspectral data was decomposed using the wavelet transform algorithm. The sensitivity of the high-frequency information increased with the degree of the wavelet decomposition. SOM content was retrieved using the high-frequency coefficients created with the wavelet transform and random forest algorithm. The validation model showed a R-2 of 0.748 and RMSE of 0.254. The predictive accuracy of the model based on the random forest algorithm was improved by 10.2% compared to that of the math transformations. Therefore, the high-frequency information decomposed by the wavelet technology effectively enhanced the predictive accuracy of the SOM content by coupling the wavelet technology and random forest algorithm.
- 相关文献
作者其他论文 更多>>
-
Estimation of grain filling rate and thousand-grain weight of winter wheat ( Triticum aestivum L. ) using UAV-based multispectral images
作者:Zhang, Baoyuan;Dai, Menglei;Sun, Qian;Qu, Xuzhou;Zhang, Mingzheng;Gu, Xiaohe;Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhen, Wenchao;Zhen, Wenchao;Zhang, Baoyuan;Liu, Xingyu;Fan, Chengzhi
关键词:Grain filling rate; Grain weight; UAV; Winter wheat; Vegetation index
-
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
作者:Sun, Xuguang;Zhang, Baoyuan;Gao, Ruocheng;Gu, Limin;Zhen, Wenchao;Sun, Xuguang;Zhang, Baoyuan;Dai, Menglei;Ma, Kai;Gu, Xiaohe;Dai, Menglei;Jing, Cuijiao;Gu, Limin;Zhen, Wenchao;Gu, Shubo;Gu, Shubo;Zhen, Wenchao
关键词:reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



