Wheat straw increases the defense response and resistance of watermelon monoculture to Fusarium wilt
文献类型: 外文期刊
作者: Tang, Lili 1 ; Nie, Shaorui 1 ; Li, Wenhui 1 ; Fan, Chao 1 ; Wang, Siqi 1 ; Wu, Fengzhi 1 ; Pan, Kai 1 ;
作者机构: 1.Northeast Agr Univ, Coll Hort & Landscape Architecture, Harbin 150030, Heilongjiang, Peoples R China
2.Heilongjiang Acad Agr Sci, Inst Cash Crops, Harbin 150086, Heilongjiang, Peoples R China
3.Heilongjiang Acad Agr Sci, Inst Crop Cultivat & Tillage, Harbin 150086, Heilongjiang, Peoples R China
关键词: RNA-Seq; Wheat straw; Lignin; Auxin; Fusarium wilt; Watermelon; Fusarium oxysporum f.sp. niveum
期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )
ISSN: 1471-2229
年卷期: 2019 年 19 卷 1 期
页码:
收录情况: SCI
摘要: Background: Wheat straw is a rich resource worldwide. Straw return is an effective strategy to alleviate soil-borne diseases on monoculture watermelon. Previous studies focus on soil structure, physical and chemical properties; however, little is known about the molecular responses on host plant. Results: No significant difference on the population of Fusarium oxysporum f.sp. niveum race 1(Fon1) in rhizosphere soil was found between control (no addition of wheat straw) and the treated groups (addition of 1% (T1) or 2% (T2) wheat straw). RNA-Seq analysis showed that 3419 differentially expressed genes were clustered into 8 profiles. KEGG analysis revealed that phenylpropanoid biosynthesis and plant hormone signal transduction were involved in wheat straw induced response in monoculture watermelon. Genes in lignin biosynthesis were found to be upregulated, and the lignin and auxin contents were higher in T1 and T2 compared to the control. Lignin was also enriched and the Fon1 population decreased in watermelon roots treated with wheat straw. The enzyme activities of phenylalanine ammonia-lyase and peroxidase were increased. Conclusions: Our data suggest that the addition of wheat straw enhances the defense response to Fon1 infection in watermelon through increasing lignin and auxin biosynthesis.
- 相关文献
作者其他论文 更多>>
-
Research progress on biological prevention and control in tobacco green production
作者:Sun, Xiang-ping;Qiu, Hua-jiao;Qiu, Cai-sheng;Wu, Zhi-ming;Cao, Yi;Wang, Feng;Song, Xixia;Tang, Lili;Liu, Dandan
关键词:Tobacco; economic crop; microbial technology; biological prevention; low-carbon inputs
-
Overexpression of a Malus baccata (L.) Borkh WRKY Factor Gene MbWRKY33 Increased High Salinity Stress Tolerance in Arabidopsis thaliana
作者:Wang, Xinhui;Gao, Ming;Kong, Yihan;Yu, Qian;Yao, Lu;Li, Xingguo;Li, Wenhui;Zhang, Lihua;Han, Deguo;Liu, Wanda;Hou, Ruining
关键词:
Malus baccata ;MbWRKY33 ; high-salinity stress; genetic transformation; transcriptional regulation -
Identification and Characterization of WOX Gene Family in Flax (Linum usitatissimum L.) and Its Role Under Abiotic Stress
作者:Song, Xixia;Tang, Lili;Wu, Guangwen;Lu, Jianyu;Wang, Hang;Li, Shuyao;Zang, Zhenyuan;Zhang, Jian;Zhang, Jian
关键词:flax; WOX; gene family; phylogeny analysis; abiotic stress
-
Transcriptome and Endogenous Hormone Analysis Reveals the Molecular Mechanism of Callus Hyperhydricity in Flax (Linum usitatissimum L.)
作者:Liu, Dandan;Cheng, Lili;Tang, Lili;Yang, Lie;Jiang, Zhongjuan;Song, Xixia;Kang, Qinghua;Yao, Dandan;Chen, Si;Ru, Jiarong;Zhang, Lili;Wu, Guangwen;Yuan, Hongmei;Jiang, Zhongjuan
关键词:hyperhydricity; callus; transcriptome; hormone;
Linum usitatissimum L. -
Overexpression of a Fragaria x ananassa AP2/ERF Transcription Factor Gene (FaTINY2) Increases Cold and Salt Tolerance in Arabidopsis thaliana
作者:Li, Wenhui;Zhang, Wenhao;Li, Huiwen;Yao, Anqi;Ma, Zhongyong;Kang, Rui;Guo, Yanbo;Li, Xingguo;Han, Deguo;Yu, Wenquan
关键词:
FaTINY2 ; AP2/ERF; low temperature; high salt -
Genome-wide identification and expression pattern analysis of the cinnamoyl-CoA reductase gene family in flax (Linum usitatissimum L.)
作者:Song, Xixia;Liu, Dandan;Yao, Yubo;Tang, Lili;Cheng, Lili;Yang, Lie;Jiang, Zhongjuan;Kang, Qinghua;Chen, Si;Ru, Jiarong;Zhang, Lili;Wu, Guangwen;Yuan, Hongmei;Jiang, Zhongjuan
关键词:Flax
(Linum usitatissimum L.) ;CCR ; Lignin biosynthesis; Abiotic stress; Expression patterns -
Genome-Wide Identification and Transcriptome Analysis of P450 Superfamily Genes in Flax (Linum usitatissimum L.)
作者:Wu, Yang;Li, Zhiwei;Yi, Liuxi;Sa, Rula;Mu, Yingnan;Zhou, Yu;Song, Xixia;Tang, Lili;Liu, Dandan
关键词:flax genome; cytochrome; RNA-seq; cyanogenic glycosides; gene family



