您好,欢迎访问上海市农业科学院 机构知识库!

Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions

文献类型: 外文期刊

作者: Sun, Huifeng 1 ; Zhou, Sheng 1 ; Zhang, Jining 1 ; Zhang, Xianxian 1 ; Wang, Cong 1 ;

作者机构: 1.Shanghai Acad Agr Sci, Ecoenvironm Protect Res Inst, Shanghai 201403, Peoples R China

2.Shanghai Acad Agr Sci, Shanghai Engn Res Ctr Low Carbon Agr SERCLA, Shanghai 201415, Peoples R China

关键词: Methane emission; Paddy fields; Climate variability; Fertilizer management

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN: 0944-1344

年卷期:

页码:

收录情况: SCI

摘要: A field experiment in Yangtze River delta of China was conducted to investigate the effects of four treatments (conventional chemical fertilizers (CF), chemical fertilizers incorporated with wheat straw (CF-WS), slow-release urea fertilizer incorporated with wheat straw (SCF-WS), and no fertilizers (Non-F)) on methane emission, rice grain yield, and straw biomass in three (2013, 2014, and 2015) consecutive growing seasons. Similar air temperature and precipitation were recorded in 2014 and 2015 normal seasons; however, the 2013 season with a 2.1-2.3 degrees C higher mean air temperature and a 61-64% lower precipitation than the normal seasons was considered as a warm-and-dry season. No significant differences in seasonal total methane emissions across all treatments were observed in 2014 and 2015 seasons. Seasonal total methane emissions were 58-294% higher in 2013 season compared to 2014 and 2015 seasons, which suggests that higher ambient temperatures increase methane emissions from paddy fields. The enhanced methane emission was seen mainly during the mid-to-late growth stages after mid-season drainage. CF-WS and SCF-WS significantly increased methane emissions before mid-season drainage relative to CF, and thereby enhanced methane emissions in both normal and warm-and-dry seasons in a seasonal scale. While rice grain yield in each treatment in 2013 season was close to or lower than that in 2014 and 2015 seasons, straw biomass in CF, CF-WS, and SCF-WS in 2013 season were significantly higher than those in 2014 and 2015 seasons, by both 29%, 33-41%, and 15-16%, respectively. Enhancements in methane emissions at higher air temperatures were significantly correlated to its greater straw biomass. Furthermore, combination of slow-release urea fertilizer and straw by ploughing can significantly increase above-ground biomass yields and nitrogen use efficiency in both normal and warm-and-dry seasons.

  • 相关文献
作者其他论文 更多>>