文献类型: 外文期刊
作者: Fu, Lili 1 ; Ding, Zehong 1 ; Tan, Deguan 1 ; Han, Bingying 1 ; Sun, Xuepiao 1 ; Zhang, Jiaming 1 ;
作者机构: 1.Chinese Acad Trop Agr Sci, Hainan Bioenergy Ctr, Key Lab Trop Crops Biol & Genet Resources, Inst Trop Biosci & Biotechnol,MOA, Xueyuan Rd 4, Haikou 571101, Hainan, Peoples R China
2.Chinese Acad Trop Agr Sci, Hainan Acad Trop Agr Resource, Xueyuan Rd 4, Haikou 571101, Hainan, Peoples R China
关键词: Spirodela polyrhiza; lncRNA; Salt treatment; Gene co-expression; ssRNA-Seq
期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )
ISSN: 1471-2164
年卷期: 2020 年 21 卷 1 期
页码:
收录情况: SCI
摘要: Background Salt significantly depresses the growth and development of the greater duckweed, Spirodela polyrhiza, a model species of floating aquatic plants. Physiological responses of this plant to salt stress have been characterized, however, the roles of long noncoding RNAs (lncRNAs) remain unknown. Results In this work, totally 2815 novel lncRNAs were discovered in S. polyrhiza by strand-specific RNA sequencing, of which 185 (6.6%) were expressed differentially under salinity condition. Co-expression analysis indicated that the trans-acting lncRNAs regulated their co-expressed genes functioning in amino acid metabolism, cell- and cell wall-related metabolism, hormone metabolism, photosynthesis, RNA transcription, secondary metabolism, and transport. In total, 42 lncRNA-mRNA pairs that might participate in cis-acting regulation were found, and these adjacent genes were involved in cell wall, cell cycle, carbon metabolism, ROS regulation, hormone metabolism, and transcription factor. In addition, the lncRNAs probably functioning as miRNA targets were also investigated. Specifically, TCONS_00033722, TCONS_00044328, and TCONS_00059333 were targeted by a few well-studied salt-responsive miRNAs, supporting the involvement of miRNA and lncRNA interactions in the regulation of salt stress responses. Finally, a representative network of lncRNA-miRNA-mRNA was proposed and discussed to participate in duckweed salt stress via auxin signaling. Conclusions This study is the first report on salt-responsive lncRNAs in duckweed, and the findings will provide a solid foundation for in-depth functional characterization of duckweed lncRNAs in response to salt stress.
- 相关文献
作者其他论文 更多>>
-
Integrated metabolomic and transcriptomic analyses revealed the overlapping response mechanisms of banana to cold and drought stress
作者:Xing, Junchao;Meng, Fanjuan;Xing, Junchao;Ye, Xiaoxue;Huo, Kaisen;Ding, Zehong;Tie, Weiwei;Xie, Zhengnan;Li, Chaochao;Hu, Wei;Xing, Junchao;Ye, Xiaoxue;Huo, Kaisen;Ding, Zehong;Tie, Weiwei;Xie, Zhengnan;Li, Chaochao;Hu, Wei;Xing, Junchao;Ye, Xiaoxue;Huo, Kaisen;Ding, Zehong;Tie, Weiwei;Xie, Zhengnan;Li, Chaochao;Hu, Wei
关键词:Abiotic stresses; Transcriptome; Metabolome; Carbohydrate; Amino acid; Flavonoid; Ascorbate
-
GenoBaits Cassava35K: high-resolution multi-SNP arrays for genetic analysis and molecular breeding using targeted sequencing and liquid chip technology
作者:Li, Chaochao;Ye, Xiaoxue;Jin, Zhongxin;Huo, Kaisen;Ma, Jiangxiang;Tie, Weiwei;Ding, Zehong;Hu, Wei;Li, Chaochao;Ye, Xiaoxue;Jin, Zhongxin;Huo, Kaisen;Ma, Jiangxiang;Tie, Weiwei;Ding, Zehong;Hu, Wei;Zhou, Yongfeng
关键词:
-
Methyl jasmonate activated regulatory module Ma14-3-3e-MbHLH130-MbACO13/MbACS7 promoting ethylene biosynthesis and fruit ripening in banana
作者:Li, Meiying;Yan, Yan;Xie, Zhengnan;Ding, Zehong;Yang, Jinghao;Wang, Yu;Ma, Jianxiang;Huo, Kaisen;Yang, Xiaoliang;Xia, Qiyu;Ye, Xiao xue;Li, Chaochao;Jin, Zhiqiang;Hu, Wei;Ren, Licheng;Hu, Wei;Zeng, Liwang
关键词:MeJA; Banana fruit ripening; Ethylene biosynthesis; Ma14-3-3e; MabHLH130
-
Physiological activities, transcriptomes and metabolomes of Pyropia yezoensis conchocelis unveil the roles of pyPGK, pyBCKDHA, and pyDLD in response to freshwater soaking
作者:Huang, Xueying;Li, Feng;He, Linwen;Huang, Xueying;Wang, Yu;Zhao, Hui;Li, Huiliang;Gu, Fenglin;Tan, Deguan;Hu, Wei;Guo, Anping;Ji, Changmian;Huang, Xueying;Wang, Yu;Zhao, Hui;Li, Huiliang;Gu, Fenglin;Tan, Deguan;Hu, Wei;Guo, Anping;Ji, Changmian;Wang, Yu;Zeng, Liwang
关键词:Pyropia yezoensis; Freshwater stress; Physiological activities; Transcriptome; Metabolome
-
A highly efficient callus model to study gene functions: HbSRPP1 may play a role in the elongation of cis-1,4-polyisoprene in the rubber tree
作者:Tan, Deguan;Guo, Zihan;Fu, Lili;Yu, Ying;Peng, Jing;Huang, Yuchun;Zhou, Xue;Sun, Xuepiao;Zhang, Jiaming;Tan, Deguan;Guo, Zihan;Zhang, Jiaming;Tan, Deguan;Peng, Jing;Huang, Yuchun;Zhou, Xue;Zhang, Jiaming
关键词:Rubber tree; Callus model; Laticifer cell; Rubber biosynthesis; Function study; Laticifer-specific promoter; HbSRPP1
-
Coordinated transcriptional regulation of carbohydrate-related pathways contributes to the difference of starch accumulation between starchy cassava and sugary cassava
作者:Ding, Zehong;Fu, Lili;Chen, Ganlu;Yan, Yan;Tie, Weiwei;Meng, Xianwei;Yang, Jinghao;Zhang, Jiaming;Hu, Wei;Ding, Zehong;Ding, Zehong;Fu, Lili;Chen, Ganlu;Yan, Yan;Tie, Weiwei;Yang, Jinghao;Zhang, Jiaming;Hu, Wei;Chen, Ganlu;Qiu, Xianjin
关键词:Starchy cassava; Sugary cassava; Starch accumulation; Metabolome; Transcriptome; Coordinated transcriptional regulation; Coexpression network
-
DlMYB1 positively regulates anthocyanin biosynthesis and contributes to red exocarp coloration in red-skinned longan
作者:Hu, Xiaowen;Liu, Liqin;Shi, Shengyou;Lu, Yiying;Xu, Liangyu;Zhang, Linsi;Zhu, Lifei;Ma, Zhiling;Zhang, Jiaming;Hu, Xiaowen;Shi, Shengyou
关键词:Red-skinned longan; MYB1; Anthocyanin; Transcription factor; Fruit peel



