Population exposure to emerging perfluoroalkyl acids (PFAAs) via drinking water resources: Application of multivariate statistics and risk assessment models
文献类型: 外文期刊
作者: Khan, Kifayatullah 1 ; Younas, Muhammad 2 ; Ali, Jafar 3 ; Shah, Noor Samad 4 ; Kavil, Yasar N. 5 ; Assiri, Mohammed A. 7 ; Cao, Xianghui 8 ; Sher, Hassan 9 ; Maryam, Afsheen 2 ; Zhou, Yunqiao 11 ; Yaseen, Muhammad 12 ; Xu, Li 13 ;
作者机构: 1.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
2.Univ Swat, Dept Environm & Conservat Sci, Swat 19120, Khyber Pakhtunk, Pakistan
3.Jilin Univ, Jilin Prov Key Lab Water Resources & Environm, Changchun 130021, Peoples R China
4.COMSATS Univ Islamabad, Dept Chem, Abbottabad Campus, Abbottabad 22060, Pakistan
5.King Abdulaziz Univ, Fac Marine Sci, Marine Chem Dept, POB 80207, Jeddah 21589, Saudi Arabia
6.Stockholm Convent Reg Ctr Capac Bldg & Transfer Te, POB 24885, Safat 13109, Kuwait
7.King Khalid Univ, Fac Sci, Dept Chem, Abha 61413, Saudi Arabia
8.China Inst Geoenvironm Monitoring, Beijing 100081, Peoples R China
9.Univ Swat, Ctr Plant Sci & Biodivers, Swat 19120, Pakistan
10.Stockholm Univ, Dept Environm Sci ACES B, Inst Miljovetenskap, S-10691 Stockholm, Sweden
11.Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Resources, Beijing 100101, Peoples R China
12.Univ Peshawar, Inst Chem Sci, Peshawar 25120, Pakistan
13.Beijing Acad Agr & Forestry Sci, Inst Qual Stand & Testing Technol, Beijing 100095, Peoples R China
14.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China
关键词: Perfluoroalkyl acids; Drinking water; Multivariate statistics; Source allocation; Environmental risks; Pakistan
期刊名称:MARINE POLLUTION BULLETIN ( 影响因子:5.3; 五年影响因子:6.1 )
ISSN: 0025-326X
年卷期: 2024 年 203 卷
页码:
收录情况: SCI
摘要: This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography-mass spectrometry (LC-MS) system. The concentrations of & sum;PFCAs, & sum;PFSAs, and & sum;PFAAs in drinking water ranged from 1.46 to 72.85, 0.30-8.03, and 1.76-80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the & sum;PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.
- 相关文献
作者其他论文 更多>>
-
Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data
作者:Qin, Zhen;Yang, Huanfen;Shu, Qingtai;Xu, Li;Wang, Mingxing;Xia, Cuifen;Yu, Jinge;Duan, Dandan
关键词:ICESat-2/ATLAS; multi-source remote sensing data; Sequential Gaussian Conditional Simulation; Leaf Area Index; inversion
-
Quantifying the mitigating effect of organic matter on heavy metal availability in soils with different manure applications: A geochemical modelling study
作者:Li, Jing;Xu, Yan;Zhang, Yitao;Li, Jing;Xu, Yan;Liu, Zhen;Gong, Huarui;Liu, Zhen;Gong, Huarui;Fang, Wen;Ouyang, Zhu;Li, Weiwei;Xu, Li
关键词:manure-fertilizer; soil heavy metal; pH leaching; geochemical model; organic matter
-
Continuous crop rotation increases soil organic carbon stocks in riverdeltaş: A 40-year field evidence
作者:Liu, Deyao;Gong, Huarui;Li, Jing;Wang, Lingqing;Ouyang, Zhu;Gong, Huarui;Liu, Zhen;Ouyang, Zhu;Xu, Li;Wang, Tieyu;Liu, Deyao
关键词:Cotton; Driving factors; River deltas; Soil organic carbon stock; Wheat-maize
-
Microplastics in remote region of the world: Insights from the glacier of Geladandong, China
作者:Niu, Xuerui;Wang, Xiaoping;Dong, Huike;Zhou, Yunqiao;Niu, Xuerui;Wang, Xiaoping;Ciren, Nixia;Zhang, Huifang;Chen, Xu;Zhuoga, Suona;Jia, Xiaohua;Xu, Li;Xu, Li
关键词:Microplastics; Environmental background; Fate; Tibetan plateau
-
Regional Scale Inversion of Chlorophyll Content of Dendrocalamus giganteus by Multi-Source Remote Sensing
作者:Xia, Cuifen;Zhou, Wenwu;Shu, Qingtai;Wu, Zaikun;Xu, Li;Yang, Huanfen;Qin, Zhen;Wang, Mingxing;Duan, Dandan
关键词:RS; machine learning; chlorophyll content; Dendrocalamus giganteus; inversion
-
Interactions of traditional and biodegradable microplastics with neonicotinoid pesticides
作者:Wang, Kang;Chen, Wei;Wang, Kang;Chen, Wei;Wang, Kang;Li, Cheng;Li, Haifeng;Li, Fang;Xu, Li;Liu, Qi;Khan, Kifayatullah
关键词:Microplastic; Neonicotinoid pesticide; Adsorption-desorption mechanism; Aging; Bioavailability
-
Identification and visualization of environmental microplastics by Raman imaging based on hyperspectral unmixing coupled machine learning
作者:Li, Fang;Lu, Anxiang;Xu, Li;Liu, Dongsheng;Guo, Xuetao;Zhang, Zhenming;Martin, Francis L.;Martin, Francis L.
关键词:Microplastic; Raman imaging; Alternating volume maximization; Hyperspectral unmixing; Machine learning