您好,欢迎访问江苏省农业科学院 机构知识库!

Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway

文献类型: 外文期刊

作者: Shu, Hongmei 1 ; Sun, Shangwen 3 ; Wang, Xiaojing 1 ; Yang, Changqin 1 ; Zhang, Guowei 1 ; Meng, Yali 3 ; Wang, Youhua 3 ; Hu, Wei 3 ; Liu, Ruixian 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Ind Crops, Nanjing 210014, Peoples R China

2.Minist Agr & Rural Affairs, Key Lab Cotton & Rapeseed, Nanjing 210014, Peoples R China

3.Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China

关键词: TDZ; low temperature; cotton leaf abscission; abscission zone; transcriptome; plant hormones

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:6.208; 五年影响因子:6.628 )

ISSN:

年卷期: 2022 年 23 卷 22 期

页码:

收录情况: SCI

摘要: Thidiazuron (TDZ) is the main defoliant used in production to promote leaf abscission for machine-picked cotton. Under low temperatures, the defoliation rate of cotton treated with TDZ decreases and the time of defoliation is delayed, but there is little information about this mechanism. In this study, RNA-seq and physiological analysis are performed to reveal the transcriptome profiling and change in endogenous phytohormones upon TDZ treatment in abscission zones (AZs) under different temperatures (daily mean temperatures: 25 degrees C and 15 degrees C). Genes differentially expressed in AZs between TDZ treatment and control under different temperatures were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two temperature conditions. The results show that, compared with the corresponding control group, TDZ induces many differentially expressed genes (DEGs) in AZs, and the results of the GO and KEGG analyses show that the plant hormone signaling transduction pathway is significantly regulated by TDZ. However, under low temperature, TDZ induced less DEGs, and the enriched GO terms and KEGG pathways were different with those under normal temperature condition. Many genes in the plant hormone signal transduction pathway could not be induced by TDZ under low temperature conditions. In particular, the upregulated ethylene-signaling genes and downregulated auxin-signaling genes in AZs treated with TDZ were significantly affected by low temperatures. Furthermore, the expression of ethylene and auxin synthesis genes and their content in AZs treated with TDZ were also regulated by low temperature conditions. The upregulated cell wall hydrolase genes induced by TDZ were inhibited by low temperatures. However, the inhibition of low temperature on genes in AZs treated with TDZ was relieved with the extension of the treatment time. Together, these results indicate that the responses of ethylene and auxin synthesis and the signaling pathway to TDZ are inhibited by low temperatures, which could not induce the expression of cell wall hydrolase genes, and then inhibit the separation of AZ cells and the abscission of cotton leaves. This result provides new insights into the mechanism of defoliation induced by TDZ under low temperature conditions.

  • 相关文献
作者其他论文 更多>>