您好,欢迎访问浙江省农业科学院 机构知识库!

Genome-Wide Identification and Expression Analysis of ESPs and NSPs Involved in Glucosinolate Hydrolysis and Insect Attack Defense in Chinese Cabbage (Brassica rapa subsp. pekinensis)

文献类型: 外文期刊

作者: Han, Danni 1 ; Tan, Jingru 1 ; Yue, Zhichen 1 ; Tao, Peng 1 ; Lei, Juanli 1 ; Zang, Yunxiang 3 ; Hu, Qizan 1 ; Wang, Huasen 4 ; Zhang, Shizhong 2 ; Li, Biyuan 1 ; Zhao, Yanting 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Vegetables, Hangzhou 310021, Peoples R China

2.Shandong Agr Univ, Coll Life Sci, State Key Lab Crop Biol, Tai An 271018, Peoples R China

3.Zhejiang A&F Univ, Coll Agr & Food Sci, Key Lab Qual Improvement Agr Prod Zhejiang Prov, Hangzhou 311300, Peoples R China

4.Qingdao Agr Univ, Coll Hort, Engn Lab Genet Improvement Hort Crops Shandong Pro, Qingdao 266109, Peoples R China

关键词: Brassica rapa; ESP; NSP; glucosinolate hydrolysis; insect attack response

期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )

ISSN:

年卷期: 2023 年 12 卷 5 期

页码:

收录情况: SCI

摘要: Glucosinolates are secondary plant metabolites that are part of the plant's defense system against pathogens and pests and are activated via enzymatic degradation by thioglucoside glucohydrolases (myrosinases). Epithiospecifier proteins (ESPs) and nitrile-specifier proteins (NSPs) divert the myrosinase-catalyzed hydrolysis of a given glucosinolate to form epithionitrile and nitrile rather than isothiocyanate. However, the associated gene families have not been explored in Chinese cabbage. We identified three ESP and fifteen NSP genes randomly distributed on six chromosomes in Chinese cabbage. Based on a phylogenetic tree, the ESP and NSP gene family members were divided into four clades and had similar gene structure and motif composition of Brassica rapa epithiospecifier proteins (BrESPs) and B. rapa nitrile-specifier proteins (BrNSPs) in the same clade. We identified seven tandem duplicated events and eight pairs of segmentally duplicated genes. Synteny analysis showed that Chinese cabbage and Arabidopsis thaliana are closely related. We detected the proportion of various glucosinolate hydrolysates in Chinese cabbage and verified the function of BrESPs and BrNSPs in glucosinolate hydrolysis. Furthermore, we used quantitative RT-PCR to analyze the expression of BrESPs and BrNSPs and demonstrated that these genes responded to insect attack. Our findings provide novel insights into BrESPs and BrNSPs that can help further promote the regulation of glucosinolate hydrolysates by ESP and NSP to resist insect attack in Chinese cabbage.

  • 相关文献
作者其他论文 更多>>