A Two-Stage Low-Altitude Remote Sensing Papaver Somniferum Image Detection System Based on YOLOv5s+DenseNet121
文献类型: 外文期刊
作者: Wang, Qian 1 ; Wang, Chunshan 1 ; Wu, Huarui 2 ; Zhao, Chunjiang 2 ; Teng, Guifa 1 ; Yu, Yajie 4 ; Zhu, Huaji 2 ;
作者机构: 1.Hebei Agr Univ, Sch Informat Sci & Technol, Baoding 071001, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Hebei Key Lab Agr Big Data, Baoding 071001, Peoples R China
4.Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
关键词: Papaver somniferum inspection; unmanned aerial vehicle (UAV); small target detection; YOLOv5s; two-stage detection and classification
期刊名称:REMOTE SENSING ( 影响因子:5.349; 五年影响因子:5.786 )
ISSN:
年卷期: 2022 年 14 卷 8 期
页码:
收录情况: SCI
摘要: Papaver somniferum (opium poppy) is not only a source of raw material for the production of medical narcotic analgesics but also the major raw material for certain psychotropic drugs. Therefore, it is stipulated by law that the cultivation of Papaver somniferum must be authorized by the government under stringent supervision. In certain areas, unauthorized and illicit Papaver somniferum cultivation on private-owned lands occurs from time to time. These illegal Papaver somniferum cultivation sites are dispersedly-distributed and highly-concealed, therefore becoming a tough problem for government supervision. The low-altitude inspection of Papaver somniferum cultivation by unmanned aerial vehicles has the advantages of high efficiency and time saving, but the large amount of image data collected needs to be manually screened, which not only consumes a lot of manpower and material resources but also easily causes omissions. In response to the above problems, this paper proposed a two-stage (target detection and image classification) method for the detection of Papaver somniferum cultivation sites. In the first stage, the YOLOv5s algorithm was used to detect Papaver somniferum images for the purpose of identifying all the suspicious Papaver somniferum images from the original data. In the second stage, the DenseNet121 network was used to classify the detection results from the first stage, so as to exclude the targets other than Papaver somniferum and retain the images containing Papaver somniferum only. For the first stage, YOLOv5s achieved the best overall performance among mainstream target detection models, with a Precision of 97.7%, Recall of 94.9%, and mAP of 97.4%. For the second stage, DenseNet121 with pre-training achieved the best overall performance, with a classification accuracy of 97.33% and a Precision of 95.81%. The experimental comparison results between the one-stage method and the two-stage method suggest that the Recall of the two methods remained the same, but the two-stage method reduced the number of falsely detected images by 73.88%, which greatly reduces the workload for subsequent manual screening of remote sensing Papaver somniferum images. The achievement of this paper provides an effective technical means to solve the problem in the supervision of illicit Papaver somniferum cultivation.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
A Cucumber Leaf Disease Severity Grading Method in Natural Environment Based on the Fusion of TRNet and U-Net
作者:Yao, Hui;Wang, Chunshan;Liu, Bo;Liang, Fangfang;Yao, Hui;Wang, Chunshan;Liu, Bo;Liang, Fangfang;Wang, Chunshan;Zhang, Lijie;Li, Jiuxi
关键词:cucumber disease; disease spot; fusion of TRNet and U-Net; two-stage segmentation framework; disease severity grading
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM
-
Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method
作者:Liu, Wei;Yang, Rui;Li, Li;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
关键词:Agricultural machinery; Electrification; Hybrid electric tractor; Environmental impact