Smallholder Crop Type Mapping and Rotation Monitoring in Mountainous Areas with Sentinel-1/2 Imagery
文献类型: 外文期刊
作者: Ren, Tingting 1 ; Xu, Hongtao 2 ; Cai, Xiumin 1 ; Yu, Shengnan 1 ; Qi, Jiaguo 1 ;
作者机构: 1.Nanjing Agr Univ, Asia Hub, Nanjing 210095, Peoples R China
2.Inner Mongolia Acad Agr & Anim Husb Sci, Hohhot 010031, Peoples R China
3.Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
关键词: crop type mapping; crop rotation; Sentinel-1; Sentinel-2; Google Earth Engine; Inner Mongolia
期刊名称:REMOTE SENSING ( 影响因子:5.349; 五年影响因子:5.786 )
ISSN:
年卷期: 2022 年 14 卷 3 期
页码:
收录情况: SCI
摘要: Accurate and timely crop type mapping and rotation monitoring play a critical role in crop yield estimation, soil management, and food supplies. To date, to our knowledge, accurate mapping of crop types remains challenging due to the intra-class variability of crops and labyrinthine natural conditions. The challenge is further complicated for smallholder farming systems in mountainous areas where field sizes are small and crop types are very diverse. This bottleneck issue makes it difficult and sometimes impossible to use remote sensing in monitoring crop rotation, a desired and required farm management policy in parts of China. This study integrated Sentinel-1 and Sentinel-2 images for crop type mapping and rotation monitoring in Inner Mongolia, China, with an extensive field-based survey dataset. We accomplished this work on the Google Earth Engine (GEE) platform. The results indicated that most crop types were mapped fairly accurately with an F1-score around 0.9 and a clear separation of crop types from one another. Sentinel-1 polarization achieved a better performance in wheat and rapeseed classification among different feature combinations, and Sentinel-2 spectral bands exhibited superiority in soybean and corn identification. Using the accurate crop type classification results, we identified crop fields, changed or unchanged, from 2017 to 2018. These findings suggest that the combination of Sentinel-1 and Sentinel-2 proved effective in crop type mapping and crop rotation monitoring of smallholder farms in labyrinthine mountain areas, allowing practical monitoring of crop rotations.
- 相关文献
作者其他论文 更多>>
-
Generating Salt-Affected Irrigated Cropland Map in an Arid and Semi-Arid Region Using Multi-Sensor Remote Sensing Data
作者:Wuyun, Deji;Bao, Junwei;Wulan, Tuya;Xin, Qingqiang;Hou, Anhong;Ren, Tingting;Wuyun, Deji;Sun, Liang;Wu, Shangrong;Sun, Zheng;Chen, Ruiqing;Crusiol, Luis Guilherme Teixeira;Peng, Jingyu;Xu, Hongtao;Wu, Nitu;Wu, Lan;Ren, Tingting
关键词:irrigation district; cropland; quantile and quantile plots testing; dry season; Google Earth Engine