文献类型: 外文期刊
作者: Liu, Shanghao 1 ; Zhao, Chunjiang 1 ; Zhang, Hongming 1 ; Li, Qifeng 2 ; Li, Shuqin 1 ; Chen, Yini 2 ; Gao, Ronghua 2 ; Wang, Rong 1 ; Li, Xuwen 2 ;
作者机构: 1.Northwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
3.North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
4.Tianjin Agr Univ, Sch Comp & Informat Engn, Tianjin 300384, Peoples R China
关键词: pig counting; instance segmentation; deformable convolution; parallel modules; pig segmentation dataset
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2024 年 14 卷 1 期
页码:
收录情况: SCI
摘要: A clear understanding of the number of pigs plays a crucial role in breeding management. Computer vision technology possesses several advantages, as it is harmless and labour-saving compared to traditional counting methods. Nevertheless, the existing methods still face some challenges, such as: (1) the lack of a substantial high-precision pig-counting dataset; (2) creating a dataset for instance segmentation can be time-consuming and labor-intensive; (3) interactive occlusion and overlapping always lead to incorrect recognition of pigs; (4) existing methods for counting such as object detection have limited accuracy. To address the issues of dataset scarcity and labor-intensive manual labeling, we make a semi-auto instance labeling tool (SAI) to help us to produce a high-precision pig counting dataset named Count1200 including 1220 images and 25,762 instances. The speed at which we make labels far exceeds the speed of manual annotation. A concise and efficient instance segmentation model built upon several novel modules, referred to as the Instances Counting Network (ICNet), is proposed in this paper for pig counting. ICNet is a dual-branch model ingeniously formed of a combination of several layers, which is named the Parallel Deformable Convolutions Layer (PDCL), which is trained from scratch and primarily composed of a couple of parallel deformable convolution blocks (PDCBs). We effectively leverage the characteristic of modeling long-range sequences to build our basic block and compute layer. Along with the benefits of a large effective receptive field, PDCL achieves a better performance for multi-scale objects. In the trade-off between computational resources and performance, ICNet demonstrates excellent performance and surpasses other models in Count1200, AP of 71.4% and AP50 of 95.7% are obtained in our experiments. This work provides inspiration for the rapid creation of high-precision datasets and proposes an accurate approach to pig counting.
- 相关文献
作者其他论文 更多>>
-
A Clean and Health-Care-Focused Way to Reduce Indoor Airborne Bacteria in Calf House with Long-Wave Ultraviolet
作者:Ding, Luyu;Yao, Chunxia;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Li, Qifeng;Zhang, Qing;Wang, Chaoyuan;Shan, Feifei
关键词:closed calf house; emission rate; size distribution; microbial composition; health improvement
-
An FPGA implementation of Bayesian inference with spiking neural networks
作者:Li, Haoran;An, Lingling;Wan, Bo;An, Lingling;Wan, Bo;Fang, Ying;Fang, Ying;Li, Qifeng;Liu, Jian K.
关键词:spiking neural networks; probabilistic graphical models; Bayesian inference; importance sampling; FPGA
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
A Point Cloud Segmentation Method for Pigs from Complex Point Cloud Environments Based on the Improved PointNet++
作者:Chang, Kaixuan;Xu, Xingmei;Li, Qifeng;Ma, Weihong;Xue, Xianglong;Xu, Zhankang;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Ma, Weihong;Qi, Xiangyu;Xue, Xianglong;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Ma, Weihong;Xue, Xianglong;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Xu, Zhankang
关键词:point cloud segmentation; PointNet++; 3D point cloud processing; SoftPool