A Point Cloud Segmentation Method for Pigs from Complex Point Cloud Environments Based on the Improved PointNet++
文献类型: 外文期刊
作者: Chang, Kaixuan 1 ; Ma, Weihong 2 ; Xu, Xingmei 1 ; Qi, Xiangyu 3 ; Xue, Xianglong 2 ; Xu, Zhankang 2 ; Li, Mingyu 2 ; Guo, Yuhang 2 ; Meng, Rui 2 ; Li, Qifeng 1 ;
作者机构: 1.Jilin Agr Univ, Coll Informat & Technol, Changchun 130118, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Natl Innovat Ctr Digital Technol Anim Husb, Beijing 100097, Peoples R China
4.Natl Innovat Ctr Digital Seed Ind, Beijing 100097, Peoples R China
5.China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
关键词: point cloud segmentation; PointNet++; 3D point cloud processing; SoftPool
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2024 年 14 卷 5 期
页码:
收录情况: SCI
摘要: In animal husbandry applications, segmenting live pigs in complex farming environments faces many challenges, such as when pigs lick railings and defecate within the acquisition environment. The pig's behavior makes point cloud segmentation more complex because dynamic animal behaviors and environmental changes must be considered. This further requires point cloud segmentation algorithms to improve the feature capture capability. In order to tackle the challenges associated with accurately segmenting point cloud data collected in complex real-world scenarios, such as pig occlusion and posture changes, this study utilizes PointNet++. The SoftPool pooling method is employed to implement a PointNet++ model that can achieve accurate point cloud segmentation for live pigs in complex environments. Firstly, the PointNet++ model is modified to make it more suitable for pigs by adjusting its parameters related to feature extraction and sensory fields. Then, the model's ability to capture the details of point cloud features is further improved by using SoftPool as the point cloud feature pooling method. Finally, registration, filtering, and extraction are used to preprocess the point clouds before integrating them into a dataset for manual annotation. The improved PointNet++ model's segmentation ability was validated and redefined with the pig point cloud dataset. Through experiments, it was shown that the improved model has better learning ability across 529 pig point cloud data sets. The optimal mean Intersection over Union (mIoU) was recorded at 96.52% and the accuracy at 98.33%. This study has achieved the automatic segmentation of highly overlapping pigs and pen point clouds. This advancement enables future animal husbandry applications, such as estimating body weight and size based on 3D point clouds.
- 相关文献
作者其他论文 更多>>
-
DASNet a dual branch multi level attention sheep counting network
作者:Chen, Yini;Gao, Ronghua;Li, Qifeng;Wang, Rong;Ding, Luyu;Li, Xuwen;Chen, Yini;Zhao, Hongtao;Li, Xuwen
关键词:
-
Construction and Completion of the Knowledge Graph for Cow Estrus with the Association Rule Mining
作者:Cheng, Zhiwei;Yu, Helong;Cheng, Zhiwei;Ding, Luyu;Peng, Cheng;Yang, Baozhu;Yu, Ligen;Li, Qifeng;Ding, Luyu;Peng, Cheng;Yu, Ligen;Li, Qifeng
关键词:cow estrus; knowledge graph; knowledge complementation; association rule algorithm
-
Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review
作者:Ding, Luyu;Zhang, Chongxian;Yue, Yuxiao;Yao, Chunxia;Li, Zhuo;Hu, Yating;Yang, Baozhu;Ma, Weihong;Yu, Ligen;Gao, Ronghua;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Yang, Baozhu;Ma, Weihong;Yu, Ligen;Gao, Ronghua;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Yang, Baozhu;Ma, Weihong;Yu, Ligen;Gao, Ronghua;Li, Qifeng;Zhang, Chongxian;Yue, Yuxiao;Li, Zhuo;Hu, Yating
关键词:behavior monitoring; contact sensing; algorithms; tiny machine learning; monitoring applications
-
2D Animal Skeletons Keypoint Detection: Research Progress and Future Trends
作者:Ma, Pengfei;Gao, Ronghua;Huang, Weiwei;Li, Xuwen;Gao, Ronghua;Li, Qifeng;Yu, Qinyang;Wang, Rong;Lai, Chengrong;Hao, Peng;Wang, Zhaoyang;Li, Xuwen;Wang, Zhaoyang
关键词:Animals; Skeleton; Joints; Data models; Predictive models; Feature extraction; Computational modeling; Measurement; Accuracy; Three-dimensional displays; Animal skeletons; keypoint detection; animal pose estimation; feature extraction
-
A reconstruction method for incomplete pig point clouds based on stepwise hole filling and its applications
作者:Xu, Zhankang;Zhao, Chunjiang;Li, Qifeng;Ma, Weihong;Li, Mingyu;Xue, Xianglong;Zhao, Chunjiang;Li, Qifeng;Ma, Weihong;Li, Mingyu;Xue, Xianglong;Zhao, Chunjiang;Li, Qifeng;Ma, Weihong;Li, Mingyu;Xue, Xianglong;Zhao, Chunjiang
关键词:3D reconstruction; 3D point cloud; Hole filling; Pig body size measurement; Pig weight estimation
-
TGFN-SD: A text-guided multimodal fusion network for swine disease diagnosis
作者:Yang, Gan;Li, Qifeng;Zhao, Chunjiang;Yan, Hua;Meng, Rui;Yu, Ligen;Yang, Gan;Li, Qifeng;Zhao, Chunjiang;Meng, Rui;Yu, Ligen;Wang, Chaoyuan;Liu, Yu;Liu, Yu
关键词:Computer-aided diagnosis; Electronic health records; Multimodal fusion; Self-supervised learning; Swine disease
-
A Machine Learning-Based Method for Pig Weight Estimation and the PIGRGB-Weight Dataset
作者:Ji, Xintong;Guo, Kaijun;Ji, Xintong;Li, Qifeng;Ma, Weihong;Li, Mingyu;Xu, Zhankang;Ren, Zhiyu;Li, Qifeng;Ma, Weihong;Yang, Simon X.
关键词:machine learning; pig weight estimation; pig dataset



