文献类型: 外文期刊
作者: Hou, Yuting 1 ; Li, Qifeng 1 ; Wang, Zuchao 2 ; Liu, Tonghai 4 ; He, Yuxiang 4 ; Li, Haiyan 1 ; Ren, Zhiyu 1 ; Guo, Xiaoli 1 ; Yang, Gan 1 ; Liu, Yu 1 ; Yu, Ligen 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
2.China Univ Geosci Beijing, Sch Sci, Beijing 100083, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Tianjin Agr Univ, Coll Comp & Informat Engn, Tianjin 300384, Peoples R China
关键词: pig vocalization; multi-feature fusion; principal component analysis; classification recognition
期刊名称:SENSORS ( 影响因子:3.9; 五年影响因子:4.1 )
ISSN:
年卷期: 2024 年 24 卷 2 期
页码:
收录情况: SCI
摘要: To improve the classification of pig vocalization using vocal signals and improve recognition accuracy, a pig vocalization classification method based on multi-feature fusion is proposed in this study. With the typical vocalization of pigs in large-scale breeding houses as the research object, short-time energy, frequency centroid, formant frequency and first-order difference, and Mel frequency cepstral coefficient and first-order difference were extracted as the fusion features. These fusion features were improved using principal component analysis. A pig vocalization classification model with a BP neural network optimized based on the genetic algorithm was constructed. The results showed that using the improved features to recognize pig grunting, squealing, and coughing, the average recognition accuracy was 93.2%; the recognition precisions were 87.9%, 98.1%, and 92.7%, respectively, with an average of 92.9%; and the recognition recalls were 92.0%, 99.1%, and 87.4%, respectively, with an average of 92.8%, which indicated that the proposed pig vocalization classification method had good recognition precision and recall, and could provide a reference for pig vocalization information feedback and automatic recognition.
- 相关文献
作者其他论文 更多>>
-
A Clean and Health-Care-Focused Way to Reduce Indoor Airborne Bacteria in Calf House with Long-Wave Ultraviolet
作者:Ding, Luyu;Yao, Chunxia;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Li, Qifeng;Zhang, Qing;Wang, Chaoyuan;Shan, Feifei
关键词:closed calf house; emission rate; size distribution; microbial composition; health improvement
-
An FPGA implementation of Bayesian inference with spiking neural networks
作者:Li, Haoran;An, Lingling;Wan, Bo;An, Lingling;Wan, Bo;Fang, Ying;Fang, Ying;Li, Qifeng;Liu, Jian K.
关键词:spiking neural networks; probabilistic graphical models; Bayesian inference; importance sampling; FPGA
-
Diversity of Trichoderma species associated with green mold contaminating substrates of Lentinula edodes and their interaction
作者:Cao, Zi-Jian;Zhao, Juan;Liu, Yu;Wang, Shou-Xian;Qin, Wen-Tao;Cao, Zi-Jian;Zheng, Su-Yue
关键词:Hypocreaceae; Trichoderma; green mold; Lentinula edodes; phylogeny; morphology; taxonomy
-
A Point Cloud Segmentation Method for Pigs from Complex Point Cloud Environments Based on the Improved PointNet++
作者:Chang, Kaixuan;Xu, Xingmei;Li, Qifeng;Ma, Weihong;Xue, Xianglong;Xu, Zhankang;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Ma, Weihong;Qi, Xiangyu;Xue, Xianglong;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Ma, Weihong;Xue, Xianglong;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Xu, Zhankang
关键词:point cloud segmentation; PointNet++; 3D point cloud processing; SoftPool
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning
-
Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage
作者:Zou, Mengxi;Zhou, Zixiang;Zou, Mengxi;Liu, Yu;Li, Cunjun;Meng, Haoran;Xing, Enguang;Ren, Yanmin;Fu, Maodong;Li, Cunjun
关键词:plant height; feature fusion; machine learning; deep learning; UAV; LAI; winter wheat
-
ICNet: A Dual-Branch Instance Segmentation Network for High-Precision Pig Counting
作者:Liu, Shanghao;Zhao, Chunjiang;Zhang, Hongming;Li, Shuqin;Wang, Rong;Liu, Shanghao;Zhao, Chunjiang;Li, Qifeng;Chen, Yini;Gao, Ronghua;Wang, Rong;Li, Xuwen;Chen, Yini;Li, Xuwen
关键词:pig counting; instance segmentation; deformable convolution; parallel modules; pig segmentation dataset