Large-scale and rapid perception of regional economic resilience from data-driven insights
文献类型: 外文期刊
作者: Cheng, Tong 1 ; Ma, Le 5 ; Zhao, Yonghua 2 ; Zhao, Chunjiang 2 ;
作者机构: 1.Ningxia Univ, Sch Architecture, Yinchuan, Peoples R China
2.Changan Univ, Sch Land Engn, Shaanxi Key Lab Land Consolidat, Xian, Peoples R China
3.Changan Univ, Shaanxi Prov Land Consolidat Engn Technol Res Ctr, Xian, Peoples R China
4.Minist Nat & Resources, Key Lab Degraded & Unused Land Consolidat Engn, Beijing, Peoples R China
5.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
6.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词: COVID-19; undesired output; NO2; economic resilience; perceiving
期刊名称:INTERNATIONAL JOURNAL OF DIGITAL EARTH ( 影响因子:3.7; 五年影响因子:3.9 )
ISSN: 1753-8947
年卷期: 2024 年 17 卷 1 期
页码:
收录情况: SCI
摘要: Developing general resilience measures that take into account spatio-temporal dynamics to withstand the adverse effects of shocks on the economy is urgent during the COVID-19 pandemic. However, rapid perception of city economic resilience at large scales is currently a challenge during disasters. Using machine learning to massively simulate hourly anthropogenic NO2 emissions from 2016 to 2020, a resilience quantification framework based on an undesired output perspective is proposed to assess the resilience of Chinese cities' economic operations during the COVID-19 pandemic. The results show that NO(2 )can characterize economic activity except for the primary industry. Spatially, the economic resilience of Chinese cities at different stages of the pandemic showed a binary pattern of Huanyong Hu line divergence and north-south divergence, respectively. Temporally, economic resilience had a hysteresis effect. Moreover, cities with larger economies recovered more quickly, despite being hit harder. Measurement of economic resilience based on undesired output required integration of information on fluctuations and trends in emissions. Our study provides a new tool for perceiving resilience during disasters from an undesired output perspective to provide support and insight into city management and planning in the post-pandemic era.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning
-
Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems
作者:Wang, Yihao;Zhao, Chunjiang;Lu, Anxiang;Dong, Daming;Gong, Wenwen;Wang, Yihao
关键词:Biodegradable microplastics; Paddy and upland soils; Greenhouse gases; Volatile Organic Compounds; Optical gas sensor