Leaf phenotypic difference analysis and variety recognition of tea cultivars based on multispectral imaging technology
文献类型: 外文期刊
作者: Cao, Qiong 1 ; Xu, Ze 4 ; Xu, Bo 1 ; Yang, Haibin 4 ; Wang, Fan 1 ; Chen, Longyue 1 ; Jiang, Xiangtai 1 ; Zhao, Chunjiang 1 ; Jiang, Ping 2 ; Wu, Quan 4 ; Yang, Guijun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Hunan Agr Univ, Coll Machinal & Elect Engn, Changsha 410125, Hunan, Peoples R China
3.Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
4.Chongqing Acad Agr Sci, Tea Res Inst, Chongqing 400000, Peoples R China
关键词: Tea leaf phenotype; Germplasm resources; Multispectral imaging
期刊名称:INDUSTRIAL CROPS AND PRODUCTS ( 影响因子:5.6; 五年影响因子:5.7 )
ISSN: 0926-6690
年卷期: 2024 年 220 卷
页码:
收录情况: SCI
摘要: Recognition of tea plant variety and grade is essential for tea germplasm resources protection. The rapid and accurate acquisition of phenotype of tea leaves is a crucial step in exploring the variety type, nutrition status, and yield prediction. Monitoring the phenotypic characteristics of tea leaves is necessary for intelligent tea germ- plasm management. This study analyzed phenotypic features of tea leaves based on multispectral imaging technology. Tea leaf images of 12242 sets from 25 different types, along with 61 groups of chemical characteristics of fresh tea leaves were obtained. A total of 92 indicators were extracted, and 38 indicators were screened using the successive projection algorithm and the shuffled frog leaping algorithm, which showed significant differences among different tea varieties. The phenotypic indexes of different tea varieties were analyzed, and a tea variety recognition model was established based on these indexes combined with gray wolf optimization-support vector machine algorithm. The average accuracy of the training, test, and validation sets were 99.74 %, 92.17%, and 91.56%, respectively. Additionally, quantitative evaluation for tea plant germplasm resources was explored. Stepwise Fisher discriminant analysis was used to identify the 61 tea plant germplasm resources, achieving an accuracy of 93.44 % with the discrimination accuracy of each grade is above 90 %.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning



