文献类型: 外文期刊
作者: Miao, Teng 1 ; Wen, Weiliang 2 ; Li, Yinglun 3 ; Wu, Sheng 2 ; Zhu, Chao 1 ; Guo, Xinyu 2 ;
作者机构: 1.Shenyang Agr Univ, Coll Informat & Elect Engn, Dongling Rd, Shenyang 110161, Liaoning, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, 11 Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, 11 Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
4.Beijing Key Lab Digital Plant, 11 Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
关键词: Label3DMaize; 3D point cloud; segmentation; maize shoot; data annotation
期刊名称:GIGASCIENCE ( 影响因子:6.524; 五年影响因子:8.702 )
ISSN: 2047-217X
年卷期: 2021 年 10 卷 5 期
页码:
收录情况: SCI
摘要: Background: The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results: We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes similar to 4-10 minutes to segment a maize shoot and consumes 10-20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion: Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.
- 相关文献
作者其他论文 更多>>
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification
-
The alleviative effect of C-phycocyanin peptides against TNBS-induced
作者:Wen, Weiliang;Wu, Sheng;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Lu, Xianju;Wu, Sheng;Lu, Xianju;Liu, Xiang;Gu, Shenghao;Guo, Xinyu;Wu, Sheng;Liu, Xiang;Gu, Shenghao;Guo, Xinyu
关键词:Three-dimensional point cloud; Semantic reconstruction; Maize leaf; Plant phenotyping
-
Three-step evolutionary enhanced capillary electrophoresis-SELEX for aptamer selection of exosome vesicles
作者:Zhao, Liping;Luan, Yunxia;Zhao, Liping;Li, Linsen;Zhao, Yi;Qu, Feng;Yang, Ge;Zhu, Chao
关键词:NK exosome; CE-SELEX; Selection strategy; Aptamer
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view
-
Maize emergence rate and leaf emergence speed estimation via image detection under field rail-based phenotyping platform
作者:Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin
关键词:Field rail-based phenotyping platform; Emergence rate; Leaf emergence speed; Faster R-CNN; Mask R-CNN



