Three-Dimensional Time-Series Monitoring of Maize Canopy Structure Using Rail-Driven Plant Phenotyping Platform in Field
文献类型: 外文期刊
作者: Ma, Hanyu 1 ; Wen, Weiliang 2 ; Gou, Wenbo 3 ; Liang, Yuqiang 3 ; Zhang, Minggang 3 ; Fan, Jiangchuan 2 ; Gu, Shenghao 2 ; Zhang, Dongsheng 1 ; Guo, Xinyu 2 ;
作者机构: 1.Shanxi Agr Univ, Coll Agr, Jinzhong 030801, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
关键词: maize canopy; time-series phenotype; 3D point cloud; plot segmentation; marginal effect
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )
ISSN:
年卷期: 2025 年 15 卷 1 期
页码:
收录情况: SCI
摘要: The spatial and temporal dynamics of crop canopy structure are influenced by cultivar, environment, and crop management practices. However, continuous and automatic monitoring of crop canopy structure is still challenging. A three-dimensional (3D) time-series phenotyping study of maize canopy was conducted using a rail-driven high-throughput plant phenotyping platform (HTPPP) in field conditions. An adaptive sliding window segmentation algorithm was proposed to obtain plots and rows from canopy point clouds. Maximum height (Hmax), mean height (Hmean), and canopy cover (CC) of each plot were extracted, and quantification of plot canopy height uniformity (CHU) and marginal effect (MEH) was achieved. The results showed that the average mIoU, mP, mR, and mF1 of canopy-plot segmentation were 0.8118, 0.9587, 0.9969, and 0.9771, respectively, and the average mIoU, mP, mR, and mF1 of plot-row segmentation were 0.7566, 0.8764, 0.9292, and 0.8974, respectively. The average RMSE of plant height across the 10 growth stages was 0.08 m. The extracted time-series phenotypes show that CHU tended to vary from uniformity to nonuniformity and continued to fluctuate during the whole growth stages, and the MEH of the canopy tended to increase negatively over time. This study provides automated and practical means for 3D time-series phenotype monitoring of plant canopies with the HTPPP.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture
-
Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods
作者:Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhao, Yanxin;Song, Wei
关键词:maize; hybrids; stomatal phenotypes; high-throughput acquisition; deep learning
-
A deep learning-based micro-CT image analysis pipeline for nondestructive quantification of the maize kernel internal structure
作者:Wang, Juan;Liu, Gui;Zhao, Chunjiang;Wang, Juan;Yang, Si;Wang, Chuanyu;Wen, Weiliang;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Wang, Juan;Yang, Si;Wang, Chuanyu;Wen, Weiliang;Zhang, Ying;Guo, Xinyu;Li, Jingyi
关键词:Maize kernel; Vitreous endosperm; Starchy endosperm; Semantic segmentation; Mirco-CT



