您好,欢迎访问中国水产科学研究院 机构知识库!

Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis

文献类型: 外文期刊

作者: Lin, Yan 2 ; Miao, Ling-Hong 1 ; Pan, Wen-Jing 1 ; Huang, Xin 1 ; Dengu, Jack Mike 1 ; Zhang, Wu-Xiao 1 ; Ge, Xian-Pin 1 ;

作者机构: 1.Nanjing Agr Univ, Wuxi Fisheries Coll, Wuxi 214081, Peoples R China

2.Chinese Acad Fishery Sci, Freshwater Fisheries Res Ctr, Key Lab Genet Breeding & Aquaculture Biol Freshwa, Minist Agr, Wuxi 214081, Peoples R China

3.Chinese Acad Fishery Sci, Freshwater Fisheries Res Ctr, Key Lab Genet Breeding & Aquaculture B

关键词: Nitrite exposure; Aristichthys nobilis; Antioxidant enzymes; Glutathione system

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN: 1050-4648

年卷期: 2018 年 76 卷

页码:

收录情况: SCI

摘要: Nitrite (NO2-) can cause oxidative stress in aquatic animal when it accumulates in the organism, resulting in different toxic effects on fish. In the present study, we investigated the effects of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of Bighead carp (Aristichthys nobilis). Fish [Initial average weight: (180.05 +/- 0.092) g] were exposed to 48.634 mg/L nitrite for 96 h, and a subsequent 96 h for the recovery test. Fish livers were collected to assay antioxidant enzymes activity, hepatic structure and expression of genes after 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h of exposure and 12 h, 24 h, 48 h, 72 h, 96 h of recovery. The results showed that the activity of glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione reductase (GR) increased significantly in the early stages of nitrite exposure. The study also showed that nitrite significantly up-regulated the mRNA levels of glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione reductase (GR) after 6, 48, and 72 h of exposure respectively. Nitrite also increased the formation of malondialdehyde (MDA), oxidized glutathione (GSSG), and the activity of catalase (CAT). Nitrite was observed to reduce the activity of superoxide dismutase (SOD) and the level of glutathione (GSH). In the recovery test, GSH and the GSSG recovered but did not return to pre-stress levels. The results suggested that the glutathione system played important roles in nitrite-induced oxidative stress in fish. The bighead carp responds to oxidative stress by enhancing the activity of GSH-Px, GST, GR and up-regulating the expression level of GSH-Px, GST, GR, a whilst simultaneously maintaining the dynamic balance of GSH/GSSG. CAT was also indispensable. They could reduce the degree of lipid peroxidation, and ultimately protect the body from oxidative damage.

  • 相关文献
作者其他论文 更多>>