您好,欢迎访问广东省农业科学院 机构知识库!

Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings

文献类型: 外文期刊

作者: Fu, Youqiang 1 ; Yang, Xujian 2 ; Shen, Hong 2 ;

作者机构: 1.Guangdong Acad Agr Sci, Rice Res Inst, Guangzhou 510640, Guangdong, Peoples R China

2.South China Agr Univ, Coll Nat Resources & Environm, Guangzhou 510642, Guangdong, Peoples R China

关键词: Cadmium (Cd); Ferrous (Fe2+); Iron plaque; Rice (Oryza sativa); Reactive oxygen species (ROS)

期刊名称:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY ( 影响因子:6.291; 五年影响因子:6.393 )

ISSN: 0147-6513

年卷期: 2018 年 161 卷

页码:

收录情况: SCI

摘要: Iron plaque (IP) on root surface can enhance the tolerance of plants to environmental stresses. However, it remains unclear the impact of Fe2+ on cadmium (Cd) toxicity to rice (Oryza saliva) seedlings. In this study, the effects of different Fe2+ and Cd2+ concentration combinations on rice growth were examined hydroponically. Results indicated that Fe2+ concentration up to 3.2 mM did not damage rice roots while induced IP formation obviously. Cd2+ of 10 mu M repressed rice growth significantly, while the addition of 0.2 mM Fe(2+ )to 10 mu M Cd2+ solution (Cd + Fe) did not damage rice roots, indicating that Fe2+ could ameliorate Cd toxicity to rice seedlings. Microstructure analysis showed Cd + Fe treatment induced the formation of IP with dense and intricate network structure, Cd adsorption on the root surface was reduced significantly. Cd concentration of rice roots and shoots and Cd translocation from roots to shoots with Fe + Cd treatment were reduced by 34.1%, 36.0% and 20.1%, respectively, in comparison to a single Cd treatment. Noteworthy, the removal of IP resulted in a larger loss of root biomass under Cd treatment. In addition, Cd + Fe treatment increased the activities of root superoxide dismutase and catalase by 105.5% and 177.4%, and decreased H2O2 and O-2 center dot(-) accumulation of rice roots by 56.9% and 35.9%, and recovered Cd-triggered electrolyte leakage obviously, when compared with a single Cd treatment. The results from this experiment indicated that the formed dense IP on rice roots decreased Cd absorption and reactive oxygen species accumulation, and Fe2+ supply alleviated Cd toxicity to rice seedlings.

  • 相关文献
作者其他论文 更多>>