您好,欢迎访问上海市农业科学院 机构知识库!

The Roles of Graphene and Ag in the Hybrid Ag@Ag2O-Graphene for Sulfamethoxazole Degradation

文献类型: 外文期刊

作者: Zhou, Li 1 ; Zou, Guoyan 1 ; Deng, Huiping 3 ;

作者机构: 1.Shanghai Acad Agr Sci, Inst Ecoenvironm & Plant Protect, Shanghai 201403, Peoples R China

2.Shanghai Engn Res Ctr Low Carbon Agr SERCLA, Shanghai 201415, Peoples R China

3.Tongji Univ, Coll Environm, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China

关键词: Ag@Ag2O-graphene; graphene; Ag; visible light; sulfamethoxazole; photocatalytic mechanism

期刊名称:CATALYSTS ( 影响因子:4.146; 五年影响因子:4.399 )

ISSN: 2073-4344

年卷期: 2018 年 8 卷 7 期

页码:

收录情况: SCI

摘要: Ag@Ag2O-graphene (Ag@Ag2O-G) with different concentrations of graphene was synthesized using a facile in situ precipitation method. The photocatalysts were characterized by field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS). The antibioticsulfamethoxazole (SMX) degradationunder simulated solar light and visible light irradiationwas investigated to evaluate photocatalytic performance. The composite photocatalyst Ag@Ag2O-G with 2.5 wt% graphene presented the highest activity among all the prepared composite photocatalysts. The coupling of graphene and Ag-0 increased the photocatalyticactivity and stability of pure Ag2O. Under higher SMX concentrations, the adsorption, not the photocatalytic ability, playeda crucial role during the SMX removal process. On the basis of the characterization and reactive oxygen species (ROS) scavenging experiments, a separation and transfer mechanism of photogenerated carriers was proposed. In the photocatalytic degradation of SMX, the major active species wereidentified as photogenerated holes; photogenerated electrons in the conduction band (CB) of Ag2O could not transfer to graphene through Ag(0)due to the more negative reduction potential of graphene. This is an important result regardinggraphene and Ag-0 roles which isdifferent from that for the photocatalytic degradation of dyes. This researchmay provide new insights into photocatalytic processes for the degradation of non-dye pollutants bycomposite materials to guidethe design of highly efficient reaction systems.

  • 相关文献
作者其他论文 更多>>