The role of iron oxides in the preservation of soil organic matter under long-term fertilization
文献类型: 外文期刊
作者: Wang, Ping 1 ; Wang, Jidong 1 ; Zhang, Hui 1 ; Dong, Yue 1 ; Zhang, Yongchun 1 ;
作者机构: 1.Minist Agr, Jiangsu Acad Agr Sci, Sci Observat & Expt Stn Farmland Conversat & Cult, Agr Resources & Environm Inst, Nanjing 210014, Jiangsu, Peoples R China
关键词: Organo-mineral associations; Non-crystalline Fe; Soil aggregates; Soil organic carbon
期刊名称:JOURNAL OF SOILS AND SEDIMENTS ( 影响因子:3.308; 五年影响因子:3.586 )
ISSN: 1439-0108
年卷期: 2019 年 19 卷 2 期
页码:
收录情况: SCI
摘要: PurposeThe aim of this paper is to enlighten the role of highly reactive iron (Fe) minerals in soil organic carbon (SOC) preservation in soil aggregates.Materials and methodsThe effects of four long-term (37-year) fertilization regimes (NPK, chemical fertilization; NPKM, chemical fertilization + cattle manure; M, cattle manure; CK, non-fertilization control) on organic carbon (OC) stability, soil iron fractions in bulk soil, and soil aggregates were studied to characterize the capacity and mechanism of Fe minerals to preserve SOM in soil.Results and discussionLong-term fertilization significantly altered the Fe fractions in soil and soil aggregates. The two applications with manure (NPKM and M) increased the non-crystalline Fe content, while the chemical fertilizer (NPK) increased the crystalline Fe content. Besides, long-term fertilization with manure greatly increased the content of SOC and soil total nitrogen (STN). The non-crystalline Fe was positively correlated with the SOC content in both soil and soil aggregates. Meanwhile, the long-term fertilization treatments greatly changed the mass distribution and OC content of soil aggregates.ConclusionsLong-term manure fertilization promoted the formation of non-crystalline Fe fractions, which bounds to SOC to form soil macro-aggregates. Thus, the formation of SOC-Fe association in soil and soil aggregates plays a crucial role in SOC preservation.
- 相关文献
作者其他论文 更多>>
-
Biochar increases pakchoi yield by regulating soil bacterial communities but reduces it through soil fungi in vegetable soil
作者:Zhong, Lei;Gu, Zhibin;Wang, Ruying;Wang, Hongyue;Li, Gaoyuan;Sun, Yuru;Xiao, Hui;Zhang, Hui
关键词:High nitrogen fertilizer; Biochar; Soil microbial diversity; Yield; Agroecosystem
-
Amendment of straw with decomposing inoculants benefits the ecosystem carbon budget and carbon footprint in a subtropical wheat cropping field
作者:Ji, Cheng;Wang, Jidong;Xu, Cong;Yuan, Jie;Liang, Dong;Wang, Lei;Ning, Yunwang;Zhang, Yongchun;Ji, Cheng;Wang, Jidong;Xu, Cong;Zhang, Yongchun;Gu, Yian;Zhou, Jie
关键词:
-
Wheat straw and microbial inoculants have an additive effect on N2O emissions by changing microbial functional groups
作者:Ji, Cheng;Wang, Jidong;Sun, Yuxiang;Xu, Cong;Zhong, Yuehua;Ning, Yunwang;Zhang, Hui;Zhang, Yongchun;Ji, Cheng;Wang, Jidong;Xu, Cong;Zhang, Hui;Zhang, Yongchun;Wang, Jidong;Zhang, Yongchun;Sun, Yuxiang;Zhou, Jie;Chen, Yinglong;Chen, Yinglong
关键词:microbial gene abundance; microbial inoculant; nitrous oxide; straw
-
Research on the toxic effects of polyacrylamide and cadmium on plants during soil utilization of municipal sludge
作者:Cai, Jinxing;Gao, Shaomin;Wang, Ping;Shao, Chaofeng;Ju, Meiting;Liu, Jinpeng;Wang, Fang;Wang, Ping;Shao, Chaofeng;Ju, Meiting;Liu, Jinpeng;Song, Zhenyu;Liu, Jinpeng;Liu, Jinpeng
关键词:Cd; emerging contaminants; municipal sludge; PAM; sludge returned
-
A broad host phage, CP6, for combating multidrug-resistant Campylobacter prevalent in poultry meat
作者:Zhang, Xiaoyan;Tang, Mengjun;Zhou, Qian;Lu, Junxian;Tang, Xiujun;Ma, Lina;Zhang, Jing;Chen, Dawei;Gao, Yushi;Zhang, Hui
关键词:Campylobacter; lytic phage; poultry meat; food safety
-
Long-term organic fertilization reshapes the communities of bacteria and fungi and enhances the activities of C- and P-cycling enzymes in calcareous alluvial soil
作者:Wang, Lei;Wang, Jidong;Zhang, Yongchun;Wang, Jing;Tang, Zhonghou
关键词:Long-term organic fertilization; Microbial community structure; beta-Glucosidase; Alkaline phosphomonoesterase; Soil organic carbon
-
A slow-release fertilizer containing cyhalofop-butyl reduces N2O emissions by slowly releasing nitrogen and down-regulating the relative abundance of nirK
作者:Zhang, Zewang;Yu, Xiangyang;Liang, Dong;Xu, Cong;Ji, Cheng;Wang, Lei;Ma, Hongbo;Wang, Jidong;Zhang, Zewang;Wang, Jidong;Chen, Gonglei
关键词:Slow-release fertilizer; Cyhalofop-butyl; Nitrous oxide; Bacteria; Nitrogen functional genes