De novo sequencing, assembly, and analysis of Iris lactea var. chinensis roots' transcriptome in response to salt stress
文献类型: 外文期刊
作者: Gu, Chunsun 1 ; Xu, Sheng 1 ; Wang, Zhiquan 1 ; Liu, Liangqin 1 ; Zhang, Yongxia 1 ; Deng, Yanming 3 ; Huang, Suzhen 1 ;
作者机构: 1.Inst Bot, Jiangsu Prov Platform Conservat & Utilizat Agr Ge, Jiangsu Key Lab Bioresources Saline Solis, Nanjing 210014, Jiangsu, Peoples R China
2.Chinese Acad Sci, Nanjing 210014, Jiangsu, Peoples R China
3.Jiangsu Acad Agr Sci, Inst Leisure Agr, Nanjing 210014, Jiangsu, Peoples R China
关键词: Transcriptome; Iris lactea var. chinensis; Halophyte; Salt stress; qRT-PCR
期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )
ISSN: 0981-9428
年卷期: 2018 年 125 卷
页码:
收录情况: SCI
摘要: As a halophyte, Iris lactea var. chinensis (I. lactea var. chinensis) is widely distributed and has good drought and heavy metal resistance. Moreover, it is an excellent ornamental plant. I. lactea var. chinensis has extensive application prospects owing to the global impacts of salinization. To better understand its molecular mechanism involved in salt resistance, the de novo sequencing, assembly, and analysis of I. lactea var. chinensis roots' transcriptome in response to salt-stress conditions was performed. On average, 74.17% of the clean reads were mapped to unigenes. A total of 121,093 unigenes were constructed and 56,398 (46.57%) were annotated. Among these, 13,522 differentially expressed genes (DEGs) were identified between salt-treated and control samples Compared to the transcriptional level of control, 7037 DEGs were up-regulated and 6539 down-regulated. In addition, 129 up-regulated and 1609 down-regulated genes were simultaneously detected in all three pairwise comparisons between control and salt-stressed libraries. At least 247 and 250 DEGs encoding transcription factors and transporter proteins were identified. Meanwhile, 130 DEGs regarding reactive oxygen species (ROS) scavenging system were also summarized. Based on real-time quantitative RT-PCR, we verified the changes in the expression patterns of 10 unigenes. Our study identified potential salt-responsive candidate genes and increased the understanding of halophyte responses to salinity stress.
- 相关文献
作者其他论文 更多>>
-
The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent
作者:Qi, Xiangyu;Wang, Huadi;Chen, Shuangshuang;Feng, Jing;Chen, Huijie;Qin, Ziyi;Deng, Yanming;Wang, Huadi;Deng, Yanming;Qin, Ziyi;Deng, Yanming;Liu, Shuyun;Chen, Quanming;Blilou, Ikram
关键词:Jasminum sambac Aiton; Oleaceae; Genome evolution; Floral scent; Terpene synthase
-
The high accumulation of phosphorus in high-yield paddy soils: A new insight from cutans
作者:Cheng, Yueqin;Xu, Sheng;Pan, Shang;Yang, Zhimin;Pan, Shang;Su, Mu;Liang, Qingqing;Wang, Ying;Li, Zhen;Wang, Haihou;Li, Zhen;Yang, Linzhang;Li, Zhen
关键词:Cutan; Phosphorus; Microorganisms; Paddy field; Mossbauer spectroscopy
-
Comparative physiology and transcriptome analysis reveals that chloroplast development influences silver-white leaf color formation in Hydrangea macrophylla var. maculata
作者:Qi, Xiangyu;Chen, Shuangshuang;Wang, Huadi;Feng, Jing;Chen, Huijie;Qin, Ziyi;Deng, Yanming;Wang, Huadi;Deng, Yanming
关键词:Hydrangea macrophylla; Leaf color; Chlorophyll; Transcriptome; Chloroplast development
-
The genome of single-petal jasmine (Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis
作者:Qi, Xiangyu;Wang, Huadi;Chen, Shuangshuang;Feng, Jing;Chen, Huijie;Qin, Ziyi;Deng, Yanming;Wang, Huadi;Deng, Yanming;Qin, Ziyi;Deng, Yanming;Blilou, Ikram
关键词:genome evolution; heat stress; benzenoid; phenylpropanoid biosynthesis; terpenoid biosynthesis; terpene synthase
-
Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals
作者:Chen, Shuangshuang;Qi, Xiangyu;Feng, Jing;Chen, Huijie;Qin, Ziyi;Wang, Huadi;Deng, Yanming;Qin, Ziyi;Deng, Yanming;Wang, Huadi;Deng, Yanming;Deng, Yanming
关键词:Hydrangea macrophylla; Aluminum stress; Transcriptome analysis; WGCNA
-
Identification of aluminum-activated malate transporters (ALMT) family genes in hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress
作者:Qin, Ziyi;Deng, Yanming;Qin, Ziyi;Chen, Shuangshuang;Feng, Jing;Chen, Huijie;Qi, Xiangyu;Wang, Huadi;Deng, Yanming;Wang, Huadi;Deng, Yanming
关键词:ALMT family; Hydrangea; Al tolerance; Gene expression
-
An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing
作者:Wang, Huadi;Deng, Yanming;Qi, Xiangyu;Chen, Shuangshuang;Feng, Jing;Chen, Huijie;Qin, Ziyi;Deng, Yanming;Qin, Ziyi;Deng, Yanming
关键词:Jasminum sambac; Cross breeding; Transcriptomic; Proteomic; Pollen-pistil interactions