Contrasting impact of elevated atmospheric CO2 on nitrogen cycle in eutrophic water with or without Eichhornia crassipes (Mart.) Solms
文献类型: 外文期刊
作者: Shi, Man 1 ; Li, Jiangye 2 ; Zhang, Weiguo 2 ; Zhou, Qi 1 ; Niu, Yuhan 1 ; Zhang, Zhenhua 2 ; Gao, Yan 2 ; Yan, Shaohua 2 ;
作者机构: 1.Nanjing Forestry Univ, Coll Forestry, Nanjing 210037, Jiangsu, Peoples R China
2.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, 50 Zhongling St, Nanjing 210014, Jiangsu, Peoples R China
3.Univ Western Australia, Sch Agr & Environm, Perth, WA 6009, Australia
关键词: CO2 concentration; Eutrophication; N-transformation; Regulation by plant; Microorganism
期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )
ISSN: 0048-9697
年卷期: 2019 年 666 卷
页码:
收录情况: SCI
摘要: The elevation of atmospheric CO2 is an inevitable trend that would lead to significant impact on the interrelated carbon and nitrogen cycles through microbial activities in the aquatic ecosystem. Eutrophication has become a common trophic state of inland waters throughout the world, but how the elevated CO2 affects N cycles in such eutrophic water with algal bloom, and how vegetative restoration helps to mitigate N2O emission remains unknown. We conducted the experiments to investigate the effects of ambient and elevated atmospheric CO2 (a[CO2], e[CO2]; 400, 800 mu mol.mol(-1)) with and without the floating aquatic plant, Eichhornia crassipes (Mart.) Solms, on N-transformation in eutrophic water using the N-15 tracer method. The nitrification could be slightly inhibited by e[CO2], due mainly to the competition for dissolved inorganic carbon between algae and nitrifiers. The e[CO2] promoted denitrification and N2O emissions from eutrophic water without growth of plants, leading to aggravation of greenhouse effect and forming a vicious cycle. However, growth of the aquatic plant, Eichhornia crassipes, slightly promoted nitrification, but reduced N2O emissions from eutrophic water under e[CO2] conditions, thereby attenuating the negative effect of e[CO2] on N2O emissions. In the experiment, the N transformation was influenced by many factors such as pH, DO and algae density, except e[CO2] and plant presence. The pH could be regulated through diurnal photosynthesis and respiration of algae and mitigated the acidification of water caused by e[CO2], leading to an appropriate pH range for both nitrifying and denitrifying microbes. Algal respiration at night could consume DO and enhance abundance of denitrifying functional genes (nirK, nosZ) in water, which was also supposed to be a critical factor affecting denitrification and N2O emissions. This study clarifies how the greenhouse effect caused by e[CO2] mediates N biogeochemical cycle in the aquatic ecosystem, and how vegetative restoration mitigates greenhouse gas emission. (C) 2019 Elsevier B.V. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Phosphogypsum and biosynthesized selenium nanoparticles synergistically mitigate cadmium contamination and promote maize growth in wastewater-irrigated alkaline soil
作者:Alharbi, Khadiga;Gao, Yan;Hafez, Emad M.;Gao, Yan;Hafez, Emad M.;Elatafi, Essam;Omara, Alaa El-Dein;Gadow, Samir I.;Osman, Hany S.;Alshaal, Tarek;Alshaal, Tarek;Rashwan, Emadelden;Hafez, Emad M.
关键词:Alkaline soil; Antioxidant enzymes activity; Cadmium stress; Nutritional content; Soil chemical properties; Oxidative stress
-
Control locations confuse evaluation of passivation effects of iron-based biochar and selenium applications on wheat grain cadmium accumulation in a Cd-contaminated weakly alkaline soil
作者:Jing, Feng;Li, Hongbo;Zhou, Dongmei;Gao, Yan;Fan, Guangping;Zhang, Qingya;Gao, Xuezhen
关键词:field experiment; foliar Se application; Se accumulation; soil Cd heterogeneity; toxic metal; wheat Cd
-
Ball-Milling-Modified Biochar with Additives Enhances Soil Cd Passivation, Increases Plant Growth and Restrains Cd Uptake by Chinese Cabbage
作者:Lu, Xin;Sun, Jiawan;Pan, Guojun;Qi, Weicong;Zhang, Zhenhua;Gao, Yan;Lu, Xin;Gao, Yan;Zhang, Zhenhua;Zhang, Zhenhua;Xing, Jincheng
关键词:heavy metals; soil pollution; modification; adsorption; safe production
-
Mn-doped cerium dioxide nanozyme mediates ROS homeostasis and hormone metabolic network to promote wheat germination under low-temperature conditions
作者:Wu, Yixin;Xu, Shen;Sun, Mengqing;Liu, Lizhu;Shi, Gaoling;Gao, Yan;Wu, Yixin;Xu, Shen;Sun, Mengqing;Liu, Lizhu;Shi, Gaoling;Gao, Yan;Wei, Hui;Muhammad, Faheem;Muhammad, Faheem
关键词:Wheat; Nanozyme; Seed priming; Cold tolerance; Hormone metabolic
-
The role of symbiotic nitrogen-fixing bacteria, Rhizobium and Sinorhizobium, as "bridges" in the rhizosphere of legumes after fomesafen application
作者:Chen, Wei;Li, Yuntao;Shi, Gaoling;Fan, Guangping;Tong, Fei;Liu, Lizhu;Li, Jiangye;Gao, Yan;Chen, Wei;Li, Yuntao;Shi, Gaoling;Fan, Guangping;Tong, Fei;Liu, Lizhu;Li, Jiangye;Gao, Yan;Chen, Wei;Li, Yuntao;Fan, Guangping;Tong, Fei;Gao, Yan;Shi, Gaoling;Gao, Yan
关键词:Legumes; Nitrogen-fixing microbes; Rhizospheric network; Symbiotic nitrogen-fixing bacteria; Root characteristics
-
Insights into the impact of different phytoremediation strategies on antibiotic resistance genes at the metagenomic level in real scenarios
作者:Zhang, Wei-Guo;Liao, Yonghui;Zhang, Wei-Guo;Liang, Sizhou;Gao, Yan;Ran, Guangcan;Ji, Shenyang;Lei, Zhongfang
关键词:Antibiotic resistance genes; Phytoremediation; Metagenome; Wastewater
-
Enhancing rice productivity in wastewater-irrigated saline Cd-contaminated soils using microbial-nanoparticle synergy
作者:Hafez, Emad M.;Hafez, Emad M.;Gao, Yan;Hafez, Emad M.;Gao, Yan;La, Honggui;Alharbi, Khadiga;Hamada, Maha M.;Omara, Alaa El-Dein;Alshaal, Tarek;Alshaal, Tarek
关键词:Saline Cd-contaminated soil; Soil remediation; Rice productivity; Antioxidant enzymes; Sustainable agriculture; Food safety



