您好,欢迎访问北京市农林科学院 机构知识库!

Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study

文献类型: 外文期刊

作者: Yue, Jibo 1 ; Tian, Qingjiu 1 ; Dong, Xinyu 1 ; Xu, Kaijian 1 ; Zhou, Chengquan 3 ;

作者机构: 1.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China

2.Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China

3.Minist Agr China, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China

4.Zhejiang Acad Agr Sci, Inst Digital Agr, Hangzhou 310021, Zhejiang, Peoples R China

关键词: crop residue cover; crop residue moisture; soil moisture; angle index; remote sensing

期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )

ISSN: 2072-4292

年卷期: 2019 年 11 卷 7 期

页码:

收录情况: SCI

摘要: Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, n = 392); (ii) a wet dataset (wet soils and crop residues, n = 822); (iii) a saturated dataset (saturated soils and crop residues, n = 402); and (iv) all datasets (n = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas.

  • 相关文献
作者其他论文 更多>>