Estimating potato above-ground biomass based on vegetation indices and texture features constructed from sensitive bands of UAV hyperspectral imagery
文献类型: 外文期刊
作者: Liu, Yang 1 ; Fan, Yiguang 1 ; Feng, Haikuan 1 ; Chen, Riqiang 1 ; Bian, Mingbo 1 ; Ma, Yanpeng 1 ; Yue, Jibo 3 ; Yang, Guijun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.China Agr Univ, Key Lab Agr Informat Acquisit Technol, Minist Agr & Rural Affairs, Beijing 100083, Peoples R China
3.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
关键词: UAV; Potato; AGB; Hyperspectral images; RF
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:7.7; 五年影响因子:8.4 )
ISSN: 0168-1699
年卷期: 2024 年 220 卷
页码:
收录情况: SCI
摘要: Above-ground biomass (AGB) estimation is critical for monitoring crop growth and assessing yields. Unmanned aerial vehicle (UAV) optical remote sensing technology offers robust support for crop AGB estimation through vegetation indices (VIs). However, under conditions of high nitrogen or high AGB, most VIs lose their response to the presence of a dense plant canopy. To address the inaccuracy of estimating crop multistage AGB based on VIs formed in two bands, a UAV imaging hyperspectral experiment was conducted on potato test plots with different varieties, planting densities, and fertilizer application gradients. The ratio vegetation index (RVI) and normalized difference vegetation index (NDVI) were initially modified using a lambda-by-lambda optimization algorithm, which yielded the optimized RVI (Opt-RVI) and NDVI (Opt-NDVI). Their performances were compared with published VIs. Then, the corresponding bands from optimized VIs were used to extract textural features and their estimation performances were evaluated. Finally, based on published VIs, Opt-VIs, textures of sensitive bands, and Opt-VIs combined with the textures, the potato multistage AGB was estimated by optimized random forest (RF) regression. The RF estimation model was simplified according to variable importance scores. Results showed the spectral regions sensitive to AGB were mainly located in the red-edge range. The wavelengths of OptRVI and Opt-NDVI that exhibited the strongest correlation with AGB were 734 and 742 nm. Except for the normalized red-edge index formed by two red-edge bands, the published VIs (R-2 = 0.07-0.28) demonstrated saturation in the context of high AGB. The optimized Opt-RVI and Opt-NDVI suppressed this phenomenon, such that R-2 values for both reached 0.44 for estimating AGB. The R-2 values of textural features relative to AGB for both bands ranged from 0.06 and 0.31, and CON734, COR734, DIS742, ENT742, SEC742, and COR742 exhibited the strongest correlations with AGB (R-2 > 0.2). The performance of estimating potato AGB by a single indicator was sensitive texture features, Opt-VIs and published VIs from high to low and the estimation capacities of these models were limited. The combination of Opt-VIs and textural features of sensitive bands demonstrated the greatest estimation accuracy (R-2 = 0.62 and RMSE = 293.08 kg/hm(2)). Based on variable importance scores, the accuracy of the simplified RF estimation model (four variables: Opt-RVI, CON734, ENT742, COR742) slightly decreased (R-2 = 0.59 and RMSE = 301.01 kg/hm(2)), but model complexity was reduced and computational efficiency was improved. The simplified model accuracy was mainly affected by potato variety, fertilizer gradient, and growth stage, but not by planting density. The results of this study can be used as a reference for potato growth monitoring in the field.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



