您好,欢迎访问福建省农业科学院 机构知识库!

Illumina((R)) Sequencing Reveals Candidate Genes of Carotenoid Metabolism in Three Pummelo Cultivars (Citrus Maxima) with Different Pulp Color

文献类型: 外文期刊

作者: Jiang, Cui-Cui 1 ; Zhang, Yan-Fang 1 ; Lin, Yan-Jin 1 ; Chen, Yuan 2 ; Lu, Xin-Kun 1 ;

作者机构: 1.Fujian Acad Agr Sci, Fruit Res Inst, Fuzhou 350013, Fujian, Peoples R China

2.Fujian Acad Agr Sci, Inst Agr Engn & Technol, Fuzhou 350003, Fujian, Peoples R China

关键词: Citrus maxima; transcriptome; carotenoid biosynthesis; transcription factor

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2019 年 20 卷 9 期

页码:

收录情况: SCI

摘要: Pummelo (Citrus maxima) is one of important fruit trees, which belongs to Citrus species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that Huangjinmiyou' (HJMY) has the highest content of -carotene, followed by Hongroumiyou' (HRMY) and Guanximiyou' (GXMY). Lycopene is dominantly accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which 12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12 DEGs, phytoene synthase (PSY2), lycopene -cyclase (LYCB2), lycopene ?-cyclase (LYCE), carotenoid cleavage dioxygenases (CCD4), 9-cis-epoxycarotenoid dioxygenase (NCED2), aldehyde oxidase 3 (AAO3), and ABA 8-hydroxylases (CYP707A1) are the most distinct DEGs in three pummelo cultivars. The co-expression analysis revealed that the expression patterns of several transcription factors such as bHLH, MYB, ERF, NAC and WRKY are highly correlated with DEGs, which are involved in carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our results provide a global vision of transcriptomic profile among three pummelo cultivars with different pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.

  • 相关文献
作者其他论文 更多>>