Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress
文献类型: 外文期刊
作者: Yu, Shuan 1 ; Fan, Jiangchuan 2 ; Lu, Xianju 2 ; Wen, Weilian 2 ; Shao, Song 1 ; Liang, Dong 1 ; Yang, Xiaozeng 1 ; Guo, Xinyu 1 ; Zhao, Chunjiang 1 ;
作者机构: 1.Anhui Univ, Natl Engn Res Ctr Agroecol Big Data Anal & Applica, 111 Jiulong Rd, Hefei 230601, Peoples R China
2.China Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Beijing 100097, Peoples R China
关键词: Hyperspectral data; Time-series phenotypes; Quality attributes; Water stress; Deep learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 211 卷
页码:
收录情况: SCI
摘要: Efficiently analyzing the relationship between plant phenotypes, quality, and resistance remains challenging. In this study, deep learning models based on hyperspectral data and time-series phenotypes from the highthroughput plant phenotyping (HTPP) platform were proposed to predict quality attributes of lettuce under water stress, including SSC, pH value, nitrate (NO3-), and calcium (Ca2+). First, deep learning models were developed using the Inception module and raw hyperspectral data to non-destructively predict the above quality attributes. In addition, partial least squares regression (PLSR) and support vector regression (SVR) were used to develop prediction models to evaluate performance of the Inception module. Second, the residual and attention modules were implemented to enhance performance of the Inception module. Third, time-series phenotypes were fed into four recurrent neural networks (RNNs), such as TimeDistributed (TD), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BRNN) and combined with the optimal deep learning models based on hyperspectral data to enhance prediction precision. The optimal performance of the Inceptionresidual-attention-TD model was achieved with Rp2 of 0.8900 and 0.9435 for SSC and NO3-, respectively. The Inception-residual-TD model with Rp2 of 0.9583 provided the most accurate pH value prediction. With Rp2 of 0.8716, the Inception-attention-LSTM model provided the most accurate prediction of Ca2+. Meanwhile, the Inception-residual-TD model was used to detect water stress, producing an Accuracyp of 98.86%. The Inceptionresidual model based on pixel-wise hyperspectral data was used to visualize the spatial distribution of pH value, and the distribution map was used to detect early water stress. The results indicate that deep learning models can use hyperspectral data and time-series phenotypes to predict lettuce quality attributes and water stress in a nondestructive manner.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning



