Confirmation of 'Pollen- and Seed-Specific Gene Deletor' System Efficiency for Transgene Excision from Transgenic Nicotiana tabacum under Field Conditions
文献类型: 外文期刊
作者: Duan, Zhenzhen 1 ; He, Mingyang 2 ; Akbar, Sehrish 1 ; Zhao, Degang 2 ; Zhang, Muqing 1 ; Li, Yi 3 ; Yao, Wei 1 ;
作者机构: 1.Guangxi Univ, State Key Lab Conservat & Utilizat Subtrop Agrobio, Nanning 530004, Peoples R China
2.Guangxi Univ, Guangxi Key Lab Sugarcane Biol, Nanning 530004, Peoples R China
3.Univ Connecticut, Dept Plant Sci & Landscape Architecture, Storrs, CT 06269 USA
4.Guizhou Acad Agr Sci, Plant Conservat Technol Ctr, Guizhou Key Lab Agr Biotechnol, Guiyang 550006, Peoples R China
关键词: auto transgene excision; FLP recombinase; field evaluation; transgene flow; Gene Deletor
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )
ISSN:
年卷期: 2023 年 24 卷 2 期
页码:
收录情况: SCI
摘要: The commercial application of genetically modified plants has been seriously impeded by public concern surrounding the potential risks posed by such plants to the ecosystem and human health. Previously, we have developed a 'pollen- and seed-specific Gene Deletor' system that automatically excised all transgenes from the pollen and seeds of greenhouse-grown transgenic Nicotiana tabacum. In this study, we conducted seven field experiments over three consecutive years to evaluate the stability of transgene excision under field conditions. Our results showed that transgenes were stably excised from transgenic Nicotiana tabacum under field conditions with 100% efficiency. The stability of transgene excision was confirmed based on PCR, as well as the GUS staining patterns of various organs (roots, leaves, petiole, stem, flower, fruit, and seeds) from transgenic N. tabacum. In six transgenic lines (D4, D10, D31, D56, and D43), the transgenes were stably deleted in the T0 and T1 generations. Thus, the 'Gene Deletor' system is an efficient and reliable method to reduce pollen- and seed-mediated unintentional gene flow. This system might help to alleviate the food safety concerns associated with transgenic crops.
- 相关文献
作者其他论文 更多>>
-
Genome-Wide Identification and Expression Analysis of Growth-Regulating Factors in Eucommia ulmoides Oliver (Du-Zhong)
作者:Wang, Ruoruo;Zhu, Ying;Zhao, Degang;Zhao, Degang;Zhao, Degang
关键词:growth-regulating factor; miR396; Eucommia ulmoides; GA(3); expression pattern
-
Reduced Strigolactone Synthesis Weakens Drought Resistance in Tall Fescue via Root Development Inhibition
作者:Zhong, Li;Deng, Jijin;Zhao, Degang;Zhong, Li;Yang, Chunyan;Guo, Li;Liu, Dandan;Xu, Yuejun;Chen, Ying;Chen, Yueyu
关键词:drought resistance; root development; strigolactone regulation; tall fescue
-
Feeding Eucommia ulmoides extract enhances protection against high-temperature stress in chicks
作者:Huang, Youwen;Wang, Yifan;Zhao, Degang;Song, Li;Huang, Youwen;Wang, Yifan;Song, Li;Huang, Youwen;Wang, Yifan;Zhao, Degang;Song, Li;Lei, Yue;Gong, Zouxian;Li, Minxue;Zhao, Degang
关键词:eucommia ulmoide; chick; heat tolerance; immunoregulation; cell cycle
-
EuTGA1, a bZIP transcription factor, positively regulates EuFPS1 expression in Eucommia ulmoides
作者:Shi, Ruxia;Lu, Mingyang;Liang, Qing;Zhao, Degang;Zhao, Dan;Zhao, Degang
关键词:Eucommia ulmoides; TGA Transcription factor; EuFPS1; Promoter; Positive regulator
-
Using Isoform Sequencing for De Novo Transcriptome Sequencing and the Identification of Genes Related to Drought Tolerance and Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
作者:Yang, Chunyan;Yan, Xu;Li, Yingzheng;Li, Xiaofeng;He, Ruyu;He, Jianmei;Tang, Qilin;Yang, Chunyan;Zhong, Li;Ou, Erling;Tian, Fang;Yao, Mei;Zhong, Li;Tian, Fang;Yao, Mei;Zhong, Li;Zhao, Degang;Chen, Ming
关键词:tall fescue; isoform sequencing; transcriptome; drought; agronomic traits
-
The mechanisms of hydroxy-a-sanshool from Zanthoxyum bungeanum maxim activates AMPK-HIF1-PKM2 pathway to fix the obesity
作者:Ren, Tingyuan;Xu, Fangyan;Qin, Likang;Zhu, Yuping;Zhao, Degang;Zhao, Degang;Zhao, Degang;Lu, Mintao;Zhao, Degang
关键词:Zanthoxylum bungeanum; Hydroxy-& alpha;-sanshool; High-fat diet; Lipid metabolism; Oxidative stress
-
Preparation of gutta-percha through fermentative degradation of Eucommia ulmoides Oliver leaves by recombinant yeast expressing cellulases from Trichoderma reesei
作者:Xie, Yufeng;Qin, Lijun;Zhao, Degang;Xie, Yufeng;Qin, Lijun;Zhao, Degang;Zhao, Degang
关键词:Eucommia ulmoides; Saccharomyces cerevisiae; Cellulase gene; Fermentation; Gutta-percha