Spatiotemporal variations in meteorological influences on ambient ozone in China: A machine learning approach
文献类型: 外文期刊
作者: Li, Tao 1 ; Lu, Yichen 1 ; Deng, Xunfei 2 ; Zhan, Yu 1 ;
作者机构: 1.Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
2.Zhejiang Acad Agr Sci, Inst Digital Agr, Hangzhou 310021, Zhejiang, Peoples R China
3.Sichuan Univ, Coll Carbon Neutral Future Technol, Chengdu, Sichuan, Peoples R China
关键词: Ozone; Meteorological influence; Spatiotemporal variation; Random forest; Variable importance
期刊名称:ATMOSPHERIC POLLUTION RESEARCH ( 影响因子:4.5; 五年影响因子:4.6 )
ISSN: 1309-1042
年卷期: 2023 年 14 卷 4 期
页码:
收录情况: SCI
摘要: Considering the increase in ambient ozone (O-3) levels with harmful health effects, this study aims to evaluate the spatiotemporal variations in meteorological influences on the daily maximum 8-h average O-3 concentrations ([O-3](MDA8)) across China. Leveraging the high capacity of the random forest in simulating complicated relationships between the predictor variables and [O-3](MDA8), we proposed a new method (named LVIG) to derive local variable importance from the global model (i.e., the random forest) for specific locations and months. On the basis of the LVIG results, the [O-3](MDA8) in the northern China was more associated with the evaporation and temperature, while the [O-3](MDA8) in the southern China was more associated with the relative humidity and sunshine duration. For the whole China, relative humidity was more influential during April to August, while evaporation, temperature and sunshine duration exhibited higher importance from November to February. The varying patterns of the meteorological influences could be explained by the Liebig law of the minimum, i.e., the limiting factors were the driving factors. Compared to the method of building multiple (geographically weighted) local models, the LVIG method gave more stable and specific estimates of local variable importance. As a generic method, the LVIG would be potentially applied in a wide range of fields.
- 相关文献
作者其他论文 更多>>
-
Ginkgo biloba Sex Identification Methods Using Hyperspectral Imaging and Machine Learning
作者:Chen, Mengyuan;Yang, Rui;Lu, Xiangyu;Liu, Fei;Lin, Chenfeng;Zhao, Yunpeng;Sun, Yongqi;Lou, Weidong;Deng, Xunfei
关键词:Ginkgo biloba; sex identification; leaf morphology; hyperspectral imaging; machine learning
-
Using process-oriented model output to enhance machine learning-based soil organic carbon prediction in space and time
作者:Zhang, Lei;Yang, Lin;Zhang, Lei;Heuvelink, Gerard B. M.;Mulder, Vera L.;Heuvelink, Gerard B. M.;Chen, Songchao;Deng, Xunfei;Yang, Lin
关键词:Hybrid modelling; Mechanistic knowledge-guided machine; learning; RothC; Random forest; Digital soil mapping; Soil carbon dynamics
-
Estimation of Spring Maize Planting Dates in China Using the Environmental Similarity Method
作者:Sheng, Meiling;Fei, Xufeng;Ren, Zhouqiao;Deng, Xunfei;Sheng, Meiling;Fei, Xufeng;Ren, Zhouqiao;Deng, Xunfei;Zhu, A-Xing;Ma, Tianwu;Zhu, A-Xing;Ma, Tianwu;Zhu, A-Xing
关键词:maize; planting dates; environmental similarity; the third law of geography; spatial prediction
-
Ensemble modelling-based pedotransfer functions for predicting soil bulk density in China
作者:Chen, Zhongxing;Chen, Songchao;Chen, Zhongxing;Wang, Zheng;Shi, Zhou;Chen, Songchao;Xue, Jie;Zhou, Yin;Deng, Xunfei;Liu, Feng;Song, Xiaodong;Zhang, Ganlin;Zhang, Ganlin;Su, Yang;Su, Yang;Zhu, Peng;Zhu, Peng
关键词:Soil organic carbon stock; Variable selection; Machine learning; Land cover; National scale; Soil database
-
Predicting isoscapes based on an environmental similarity model for the geographical origin of Chinese rice
作者:Sheng, Meiling;Nie, Jing;Li, Chunlin;Hu, Hao;Lou, Weidong;Deng, Xunfei;Lyu, Xiaonan;Ren, Zhouqiao;Rogers, Karyne M.;Wadood, Syed Abdul;Zhang, Yongzhi;Yuan, Yuwei;Zhang, Weixing;Sheng, Meiling;Nie, Jing;Li, Chunlin;Hu, Hao;Lou, Weidong;Deng, Xunfei;Lyu, Xiaonan;Ren, Zhouqiao;Zhang, Yongzhi;Yuan, Yuwei;Zhu, A-Xing;Rogers, Karyne M.;Wadood, Syed Abdul
关键词:Isoscapes; Rice; Geographical origin; Environmental similarity; Stable isotope
-
Evaluation of NOx emissions before, during, and after the COVID-19 lockdowns in China: A comparison of meteorological normalization methods
作者:Wu, Qinhuizi;Li, Tao;Zhang, Shifu;Fu, Jianbo;Seyler, Barnabas C.;Wang, Bin;Zhan, Yu;Zhou, Zihang;Deng, Xunfei
关键词:Meteorological normalization; COVID-19; Emission reduction; Spatiotemporal distribution; Nitrogen dioxide
-
A robust approach to deriving long-term daily surface NO2 levels across China: Correction to substantial estimation bias in back-extrapolation
作者:Wu, Yangyang;Di, Baofeng;Zeng, Wen;Zhang, Shifu;Tang, Yulei;Shi, Guangming;Yang, Fumo;Zhan, Yu;Di, Baofeng;Luo, Yuzhou;Grieneisen, Michael L.;Deng, Xunfei;Tang, Yulei;Shi, Guangming;Yang, Fumo;Zhan, Yu;Zhan, Yu
关键词:Nitrogen dioxide; Long term; Back extrapolation; Machine learning; Concept drift; Exposure assessment