Optimizing solar photovoltaic plant siting in Liangshan Prefecture, China: A policy-integrated, multi-criteria spatial planning framework
文献类型: 外文期刊
作者: Tang, Linnan 1 ; Liu, Yu 2 ; Pan, Yuchun 2 ; Ren, Yanmin 2 ; Yao, Lan 2 ; Li, Xiaolan 2 ;
作者机构: 1.China Univ Geosci Beijing, Sch Land Sci & Technol, Beijing 100083, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
关键词: Site selection; Solar PV plant; Multi-criteria decision-making method; Two-stage evaluation criteria; Energy complementarity; Liangshan Prefecture
期刊名称:SOLAR ENERGY ( 影响因子:6.6; 五年影响因子:6.6 )
ISSN: 0038-092X
年卷期: 2024 年 283 卷
页码:
收录情况: SCI
摘要: The development of solar photovoltaic (PV) energy is essential for China to meet its 'dual-carbon' goals and shift towards cleaner energy sources. Site selection, a key early step, often neglects land spatial planning constraints and suffers from subjective decision-making ambiguity. This study introduces a novel framework for identifying optimal sites for PV plants within China's spatial planning. Through two screening stages and three decisionmaking processes validated in Liangshan Prefecture (LS), where solar and hydro resources are abundant. Criteria such as orography, climate, economy, and hydro-solar complementarity are evaluated to determine PV land suitability. Utilizing the triangular fuzzy number TOPSIS method and GIS technology, the study identifies the desirable areas for PV installations (DAPs). The study highlights that 59.66% of LS's land is unsuitable for PV, with the remaining areas classified as highly suitable (0.56%), moderately suitable (2.31%), suitable (3.94%), and weakly suitable (33.52%). The DAPs are predominantly located in Huili, Yanyuan, and Huidong counties, while areas like Dechang and Xichang show potential for hydro-solar complementarity. Above all, the methodology aims to improve PV solar power generation efficiency, support local spatial planning and deliver economic and environmental benefits.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
A Comparative Analysis of Different Algorithms for Estimating Evapotranspiration with Limited Observation Variables: A Case Study in Beijing, China
作者:Sun, Di;Zhang, Hang;Qi, Yanbing;Li, Xuemin;Qi, Yanbing;Ren, Yanmin;Zhang, Zhengxian;Lv, Yuping;Cheng, Minghan;Cheng, Minghan
关键词:evapotranspiration; LST-VI space; long-time-series; machine learning; spatial distribution
-
Extraction of the upright maize straw by integrating UAV multispectral and DSM data
作者:Chao, Aosheng;Xing, Enguang;Gao, Yunbing;Li, Cunjun;Qin, Yuan;Zhu, Chengyang;Liu, Yu;Chao, Aosheng;Zhu, Chengyang;Zhu, Qingwei
关键词:Upright maize straw; UAV; New straw index; Spectral characteristics; Digital surface model
-
Estimation of SOC using VNIR and MIR hyperspectral data based on spectral-to-image transforming and multi-channel CNN
作者:Tang, Aohua;Yang, Guijun;Li, Zhenhong;Chen, Weinan;Zhang, Jing;Tang, Aohua;Yang, Guijun;Pan, Yuchun;Liu, Yu;Long, Huiling;Chen, Weinan;Zhang, Jing;Yang, Yue;Yang, Xiaodong;Xu, Bo;Yang, Yue
关键词:MIR spectral; Multi-channel-CNN; SIT; Soil organic carbon; VNIR spectral
-
Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed
作者:Tang, Boyi;Zhou, Jingping;Zhao, Chunjiang;Pan, Yuchun;Lu, Yao;Liu, Chang;Ma, Kai;Sun, Xuguang;Gu, Xiaohe;Tang, Boyi;Zhou, Jingping;Zhang, Ruifang
关键词:Object detection; Maize seedlings; Weed disturbance; YOLO; UAV multispectral images
-
Two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain respond differently to heat stress
作者:Guo, Yuan;Gao, Qi;Liu, Yu;Wang, Shouxian;Jiao, Wenyu;Zhang, Yajie;Tan, Meiting
关键词:
Lentinula edodes ; heat stress response; metabolomics; transcriptomics; multi-omics integration -
A machine learning system to evaluate physiological parameters and heat stress for sows in gestation crates
作者:Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Zhuang, Yanrong;Cao, Mengbing;Zhang, Jinrui
关键词:Sow; Heat stress; Physiological parameters prediction; Machine learning; LabVIEW



