Genome-Wide Identification and Expression of FAR1 Gene Family Provide Insight Into Pod Development in Peanut (Arachis hypogaea)
文献类型: 外文期刊
作者: Lu, Qing 1 ; Liu, Hao 1 ; Hong, Yanbin 1 ; Liang, Xuanqiang 1 ; Li, Shaoxiong 1 ; Liu, Haiyan 1 ; Li, Haifen 1 ; Wang, Runfeng 1 ; Deng, Quanqing 1 ; Jiang, Huifang 2 ; Varshney, Rajeev K. 3 ; Pandey, Manish K. 3 ; Chen, Xiaoping 1 ;
作者机构: 1.Guangdong Acad Agr Sci, Crops Res Inst, South China Peanut Sub Ctr Natl Ctr Oilseed Crops, Guangdong Prov Key Lab Crop Genet Improvement, Guangzhou, Peoples R China
2.Chinese Acad Agr Sci, Oil Crops Res Inst, Key Lab Biol & Genet Improvement Oil Crops, Minist Agr, Wuhan, Peoples R China
3.Int Crops Res Inst Semi Arid Trop, Ctr Excellence Genom & Syst Biol, Hyderabad, India
4.Murdoch Univ, Food Futures Inst, State Agr Biotechnol Ctr, Ctr Crop & Food Innovat, Murdoch, WA, Australia
关键词: peanut (Arachis hypogaea); genome-wide; far-red-impaired response 1 (FAR1); pod development; expression pattern
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: The far-red-impaired response 1 (FAR1) transcription family were initially identified as important factors for phytochrome A (phyA)-mediated far-red light signaling in Arabidopsis; they play crucial roles in controlling the growth and development of plants. The reported reference genome sequences of Arachis, including A. duranensis, A. ipaensis, A. monticola, and A. hypogaea, and its related species Glycine max provide an opportunity to systematically perform a genome-wide identification of FAR1 homologous genes and investigate expression patterns of these members in peanut species. Here, a total of 650 FAR1 genes were identified from four Aarchis and its closely related species G. max. Of the studied species, A. hypogaea contained the most (246) AhFAR1 genes, which can be classified into three subgroups based on phylogenic relationships. The synonymous (Ks) and non-synonymous (Ka) substitution rates, phylogenetic relationship and synteny analysis of the FAR1 family provided deep insight into polyploidization, evolution and domestication of peanut AhFAR1 genes. The transcriptome data showed that the AhFAR1 genes exhibited distinct tissue- and stage-specific expression patterns in peanut. Three candidate genes including Ahy_A10g049543, Ahy_A06g026579, and Ahy_A10g048401, specifically expressed in peg and pod, might participate in pod development in the peanut. The quantitative real-time PCR (qRT-PCR) analyses confirmed that the three selected genes were highly and specifically expressed in the peg and pod. This study systematically analyzed gene structure, evolutionary characteristics and expression patterns of FAR1 gene family, which will provide a foundation for the study of genetic and biological function in the future.
- 相关文献
作者其他论文 更多>>
-
Silica nanoparticles conferring resistance to bacterial wilt in peanut (Arachis hypogaea L.)
作者:Deng, Quanqing;Liu, Hao;Lu, Qing;Du, Puxuan;Li, Haifen;Li, Shaoxiong;Liu, Haiyan;Wang, Runfeng;Huang, Lu;Chen, Xiaoping;Hong, Yanbin;Huang, Suihua;Sun, Dayuan;Wu, Yahui
关键词:Peanut; Silica nanoparticles; Bacterial wilt resistance; Ralstonia solanacearum; Salicylic acid metabolism
-
ScRNA-seq reveals dark- and light-induced differentially expressed gene atlases of seedling leaves in Arachis hypogaea L.
作者:Deng, Quanqing;Du, Puxuan;Hong, Yanbin;Hu, Dongxiu;Li, Haifen;Lu, Qing;Li, Shaoxiong;Liu, Haiyan;Wang, Runfeng;Huang, Lu;Liang, Xuanqiang;Chen, Xiaoping;Liu, Hao;Gangurde, Sunil S.;Xiao, Yuan;Wang, Wenyi;Varshney, Rajeev K.;Garg, Vanika
关键词:scRNA-seq; peanut leaf; single cell; light; gene atlases
-
Celebrating Professor Rajeev K. Varshney's transformative research odyssey from genomics to the field on his induction as Fellow of the Royal Society
作者:Garg, Vanika;Barmukh, Rutwik;Chitikineni, Annapurna;Bohra, Abhishek;Roorkiwal, Manish;Ojiewo, Chris;Thudi, Mahendar;Singh, Vikas K.;Kudapa, Himabindu;Pandey, Manish K.;Saxena, Rachit K.;Fountain, Jake;Mir, Reyazul Rouf;Bharadwaj, Chellapilla;Chen, Xiaoping;Xin, Liu
关键词:agricultural biotechnology; crop genomics; plant breeding; agriculture; genome sequencing
-
A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits
作者:Lu, Qing;Huang, Lu;Liu, Hao;Li, Haifen;Guo, Dandan;Li, Shaoxiong;Liu, Haiyan;Wang, Runfeng;Deng, Quanqing;Du, Puxuan;Liang, Xuanqiang;Hong, Yanbin;Chen, Xiaoping;Garg, Vanika;Chitikineni, Annapurna;Varshney, Rajeev K.;Gangurde, Sunil S.;Pandey, Manish K.
关键词:
-
Comparative Metabolome Profiling for Revealing the Effects of Different Cooking Methods on Glutinous Rice Longjing57 (Oryza sativa L. var. Glutinosa)
作者:Guo, Zhenhua;Liu, Chuanxue;Zhang, Yunjiang;Wang, Linan;Feng, Yanjiang;Pan, Guojun;Ma, Wendong;Guo, Zhenhua;Cai, Lijun;Liu, Hao
关键词:glutinous rice; cooking; widely targeted metabolome; multivariate analysis
-
Phosphatidyl Ethanolamine Binding Protein FLOWERING LOCUS T-like 12 (OsFTL12) Regulates the Rice Heading Date under Different Day-Length Conditions
作者:Huang, Yongxiang;Guo, Jianfu;Sun, Dayuan;Guo, Zhenhua;Zheng, Zihao;Wang, Ping;Hong, Yanbin;Liu, Hao
关键词:AT-hook protein; flowering time; FTL homologous; H3 acetylation; transcription regulation
-
Tea (Camellia sinensis) ameliorates DSS-induced colitis and liver injury by inhibiting TLR4/NF-?B/NLRP3 inflammasome in mice
作者:Liu, Haiyan;Cao, Fanrong;Chen, Ruohong;Wen, Shuai;Li, Qiuhua;Lai, Xingfei;Zhang, Zhenbiao;Sun, Lingli;Sun, Shili
关键词:Camellia sinensis six types of tea; DSS-induced colitis; Liver injury; Gut-liver axis; NLRP3