您好,欢迎访问黑龙江省农业科学院 机构知识库!

Bacterial community structure and diversity in a black soil as affected by long-term fertilization

文献类型: 外文期刊

作者: Wei Dan 1 ; Yang Qian 1 ; Zhang Jun-Zheng 1 ; Wang Shuang 1 ; Chen Xue-Li 2 ; Zhang Xi-Lin 2 ; Li Wei-Qun 2 ;

作者机构: 1.Harbin Inst Technol, Harbin 150001, Peoples R China

2.Heilongjiang Acad Agr Sci, Inst Soil Fertil & Environm Sources, Harbin 150086, Peoples R China

关键词: soil microbial population;catabolic function;black soil;ofsoil bacterial community

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Black soil (Mollisol) is one of the main soil types in northeastern China. Biolog and polymerase chain reaction-denaturing gradient, gel electrophoresis (PCR-DGGE) methods were used to examine the influence of various fertilizer combinations on the structure and function of the bacterial community in a. black soil collected from Harbin, Heilongjiang Province. Biolog results showed that substrate richness and catabolic diversity of the soil bacterial community were the greatest in the chemical fertilizer and chemical fertilizer+manure treatments. The metabolic ability of the bacterial community in the manure treatment was similar to the control. DGGE fingerprinting indicated similarity in the distribution of most 16S rDNA bands among all treatments, suggesting that microorganisms with those bands were, stable and not influenced by fertilization. However, chemical fertilizer increased the diversity of soil bacterial community. Principal component analysis of Biolog and DGGE data revealed that, the structure and function of the bacterial community were similar in the control and manure treatments, suggesting that the application of manure increased the soil microbial population, but had no effect on the bacterial community structure. Catabolic function was similar in the chemical fertilizer and chemical fertilizer+manure treatments, but the composition structure of the soil microbes differed between them. The use of chemical fertilizers could result in a decline in the catabolic activity of fast-growing or eutrophic bacteria.

  • 相关文献

[1]The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland. Wang Shi-chao,Zhao Ya-wen,Wang Jin-zhou,Xu Ming-gang,Lu Chang-ai,Zhu Ping,Cui Xian,Han Xiao-zeng. 2018

[2]Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a Black soil of Northeastern China. Wang, Li,Luo, Xuesong,Liao, Hao,Chen, Wen,Cai, Peng,Huang, Qiaoyun,Wang, Li,Luo, Xuesong,Cai, Peng,Huang, Qiaoyun,Wei, Dan. 2018

[3]Fluorescence Spectroscopic Characteristics of Fulvic Acid from the Long-Term Located Fertilization in Black Soil. Li Yan-ping,Zhao Yue,Wei Zi-min,Li Shu-ling,Wei Dan,Zhou Bao-ku,Zhang Xi-lin. 2011

[4]Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: nitrogen fertilization effect. Ni, Kang,Ding, Weixin,Cai, Zucong,Ni, Kang,Wang, Yufeng,Zhang, Xilin,Zhou, Baoku. 2012

[5]Nitrous Oxide Flux from Long-term Fertilized Black Soils in A Snowfall Process. Wang Lianfeng,Han Zuoqiang,Sun Xin,Zhang Xilin,Wang Lianfeng,Cai Yanjiang. 2010

[6]Effects of Soil pH on CO2 Emission from Long-Term Fertilized Black Soils in Northeastern China. Wang, Lianfeng,Han, Zuoqiang,Zhang, Xilin,Wang, Lianfeng. 2010

[7]Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Ding, Jianli,Jiang, Xin,Ma, Mingchao,Guan, Dawei,Zhou, Jing,Cao, Fengming,Li, Li,Li, Jun,Jiang, Xin,Ma, Mingchao,Cao, Fengming,Li, Jun,Zhou, Baoku,Zhao, Baisuo.

[8]Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Wang, Yufeng,Li, Weiqun,Wang, Ying,Wei, Dan,Wang, Xiaojun,Chen, Xueli.

[9]Soil microbial properties of black soil under long-term fertilisation. Wei, Dan,Zhou, Baoku,Ma, Xingzhu,Chen, Xueli,Zhang, Junzheng.

作者其他论文 更多>>